Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Simplify. Enter a single, simplified rational expression or integer.

[tex]\[
\frac{\frac{3}{t+6}}{\frac{6}{t-6}-\frac{6}{t^2-36}}
\][/tex]

Sagot :

To simplify the given expression, we need to follow a series of steps methodically. The expression given is:

[tex]\[ \frac{\frac{3}{t+6}}{\frac{6}{t-6} - \frac{6}{t^2-36}} \][/tex]

First, observe that [tex]\( t^2 - 36 \)[/tex] can be factored as [tex]\((t + 6)(t - 6)\)[/tex]:

[tex]\[ t^2 - 36 = (t + 6)(t - 6) \][/tex]

This allows us to rewrite the expression inside the denominator:

[tex]\[ \frac{6}{t-6} - \frac{6}{t^2-36} = \frac{6}{t-6} - \frac{6}{(t+6)(t-6)} \][/tex]

Next, find a common denominator for the fractions in the denominator:

[tex]\[ \frac{6}{t-6} - \frac{6}{(t+6)(t-6)} \][/tex]

The common denominator is [tex]\((t + 6)(t - 6)\)[/tex]. Rewriting the fractions, we have:

[tex]\[ \frac{6(t + 6) - 6}{(t + 6)(t - 6)} = \frac{6t + 36 - 6}{(t + 6)(t - 6)} = \frac{6t + 30}{(t + 6)(t - 6)} \][/tex]

Now, simplify the fraction in the denominator:

[tex]\[ \frac{6t + 30}{(t + 6)(t - 6)} \][/tex]

We now substitute this back into the original expression:

[tex]\[ \frac{\frac{3}{t+6}}{\frac{6t + 30}{(t + 6)(t - 6)}} \][/tex]

To simplify the complex fraction, multiply by the reciprocal of the denominator:

[tex]\[ \frac{3}{t+6} \cdot \frac{(t + 6)(t - 6)}{6t + 30} \][/tex]

The [tex]\( t + 6 \)[/tex] terms in the numerator and denominator cancel out:

[tex]\[ \frac{3(t - 6)}{6t + 30} \][/tex]

Finally, factor out a 6 in the denominator:

[tex]\[ 6t + 30 = 6(t + 5) \][/tex]

Thus, we get:

[tex]\[ \frac{3(t - 6)}{6(t + 5)} = \frac{t - 6}{2(t + 5)} \][/tex]

So, the simplified expression is:

[tex]\[ \boxed{\frac{t - 6}{2(t + 5)}} \][/tex]