Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the equation [tex]\(\frac{3}{x+11} - \frac{5}{x-5} = 1\)[/tex], we can follow these steps:
1. Find a common denominator: The common denominator for the fractions [tex]\(\frac{3}{x+11}\)[/tex] and [tex]\(\frac{5}{x-5}\)[/tex] is [tex]\((x+11)(x-5)\)[/tex].
2. Rewrite each term with the common denominator:
[tex]\[ \frac{3}{x+11} = \frac{3(x-5)}{(x+11)(x-5)} \][/tex]
[tex]\[ \frac{5}{x-5} = \frac{5(x+11)}{(x-5)(x+11)} \][/tex]
3. Set up the equation with the common denominator:
[tex]\[ \frac{3(x-5) - 5(x+11)}{(x+11)(x-5)} = 1 \][/tex]
4. Combine the numerators and set the equation equal to 1:
[tex]\[ \frac{3(x-5) - 5(x+11)}{(x+11)(x-5)} = 1 \][/tex]
5. Eliminate the denominator by multiplying both sides of the equation by [tex]\((x+11)(x-5)\)[/tex]:
[tex]\[ 3(x-5) - 5(x+11) = (x+11)(x-5) \][/tex]
6. Simplify the left side of the equation:
[tex]\[ 3x - 15 - 5x - 55 = (x+11)(x-5) \][/tex]
Combining like terms:
[tex]\[ -2x - 70 = (x+11)(x-5) \][/tex]
7. Expand the right side of the equation:
[tex]\[ -2x - 70 = x^2 - 5x + 11x - 55 \][/tex]
Simplifying:
[tex]\[ -2x - 70 = x^2 + 6x - 55 \][/tex]
8. Set up the quadratic equation by moving all terms to one side:
[tex]\[ x^2 + 6x - 55 + 2x + 70 = 0 \][/tex]
Simplifying:
[tex]\[ x^2 + 8x + 15 = 0 \][/tex]
9. Solve the quadratic equation [tex]\(x^2 + 8x + 15 = 0\)[/tex] by factoring:
[tex]\[ (x + 3)(x + 5) = 0 \][/tex]
10. Find the roots of the factored equation:
[tex]\[ x + 3 = 0 \quad \text{or} \quad x + 5 = 0 \][/tex]
Solving these:
[tex]\[ x = -3 \quad \text{or} \quad x = -5 \][/tex]
So, the solutions to the equation [tex]\(\frac{3}{x+11} - \frac{5}{x-5} = 1\)[/tex] are:
[tex]\[ \boxed{-5, -3} \][/tex]
1. Find a common denominator: The common denominator for the fractions [tex]\(\frac{3}{x+11}\)[/tex] and [tex]\(\frac{5}{x-5}\)[/tex] is [tex]\((x+11)(x-5)\)[/tex].
2. Rewrite each term with the common denominator:
[tex]\[ \frac{3}{x+11} = \frac{3(x-5)}{(x+11)(x-5)} \][/tex]
[tex]\[ \frac{5}{x-5} = \frac{5(x+11)}{(x-5)(x+11)} \][/tex]
3. Set up the equation with the common denominator:
[tex]\[ \frac{3(x-5) - 5(x+11)}{(x+11)(x-5)} = 1 \][/tex]
4. Combine the numerators and set the equation equal to 1:
[tex]\[ \frac{3(x-5) - 5(x+11)}{(x+11)(x-5)} = 1 \][/tex]
5. Eliminate the denominator by multiplying both sides of the equation by [tex]\((x+11)(x-5)\)[/tex]:
[tex]\[ 3(x-5) - 5(x+11) = (x+11)(x-5) \][/tex]
6. Simplify the left side of the equation:
[tex]\[ 3x - 15 - 5x - 55 = (x+11)(x-5) \][/tex]
Combining like terms:
[tex]\[ -2x - 70 = (x+11)(x-5) \][/tex]
7. Expand the right side of the equation:
[tex]\[ -2x - 70 = x^2 - 5x + 11x - 55 \][/tex]
Simplifying:
[tex]\[ -2x - 70 = x^2 + 6x - 55 \][/tex]
8. Set up the quadratic equation by moving all terms to one side:
[tex]\[ x^2 + 6x - 55 + 2x + 70 = 0 \][/tex]
Simplifying:
[tex]\[ x^2 + 8x + 15 = 0 \][/tex]
9. Solve the quadratic equation [tex]\(x^2 + 8x + 15 = 0\)[/tex] by factoring:
[tex]\[ (x + 3)(x + 5) = 0 \][/tex]
10. Find the roots of the factored equation:
[tex]\[ x + 3 = 0 \quad \text{or} \quad x + 5 = 0 \][/tex]
Solving these:
[tex]\[ x = -3 \quad \text{or} \quad x = -5 \][/tex]
So, the solutions to the equation [tex]\(\frac{3}{x+11} - \frac{5}{x-5} = 1\)[/tex] are:
[tex]\[ \boxed{-5, -3} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.