Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the coefficient of [tex]\( x^3 y^2 \)[/tex] in the expansion of [tex]\( (2x + y)^5 \)[/tex], we will use the Binomial Theorem. The Binomial Theorem states:
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
For the given expansion [tex]\((2x + y)^5\)[/tex], we identify:
- [tex]\( a = 2x \)[/tex]
- [tex]\( b = y \)[/tex]
- [tex]\( n = 5 \)[/tex]
We need to find the term in the expansion where the power of [tex]\( x \)[/tex] is 3 and the power of [tex]\( y \)[/tex] is 2. Let's denote this specific term as [tex]\( T_k \)[/tex].
In a general term [tex]\( T_k \)[/tex] in the expansion, the exponents should add up to [tex]\( n \)[/tex]. Therefore, we can write:
[tex]\[ T_k = \binom{5}{k} (2x)^{5-k} y^k \][/tex]
We want the term where [tex]\( x^3 y^2 \)[/tex] appears:
- We need the power of [tex]\( x \)[/tex], which is [tex]\( (5 - k) \)[/tex], to be 3. Hence, [tex]\( 5 - k = 3 \)[/tex] which implies [tex]\( k = 2 \)[/tex].
- Therefore, the power of [tex]\( y \)[/tex], which is [tex]\( k \)[/tex], is 2.
Now substitute [tex]\( k = 2 \)[/tex] into the general term:
[tex]\[ T_2 = \binom{5}{2} (2x)^{5-2} y^2 = \binom{5}{2} (2x)^3 y^2 \][/tex]
Calculate the binomial coefficient:
[tex]\[ \binom{5}{2} = \frac{5!}{2!(5-2)!} = \frac{5 \times 4}{2 \times 1} = 10 \][/tex]
Now simplify [tex]\((2x)^3\)[/tex]:
[tex]\[ (2x)^3 = 8x^3 \][/tex]
Hence, the term [tex]\( T_2 \)[/tex] becomes:
[tex]\[ T_2 = 10 \cdot 8x^3 y^2 = 80x^3 y^2 \][/tex]
Thus, the coefficient of [tex]\( x^3 y^2 \)[/tex] in the expansion of [tex]\( (2x + y)^5 \)[/tex] is:
[tex]\[ \boxed{80} \][/tex]
[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]
For the given expansion [tex]\((2x + y)^5\)[/tex], we identify:
- [tex]\( a = 2x \)[/tex]
- [tex]\( b = y \)[/tex]
- [tex]\( n = 5 \)[/tex]
We need to find the term in the expansion where the power of [tex]\( x \)[/tex] is 3 and the power of [tex]\( y \)[/tex] is 2. Let's denote this specific term as [tex]\( T_k \)[/tex].
In a general term [tex]\( T_k \)[/tex] in the expansion, the exponents should add up to [tex]\( n \)[/tex]. Therefore, we can write:
[tex]\[ T_k = \binom{5}{k} (2x)^{5-k} y^k \][/tex]
We want the term where [tex]\( x^3 y^2 \)[/tex] appears:
- We need the power of [tex]\( x \)[/tex], which is [tex]\( (5 - k) \)[/tex], to be 3. Hence, [tex]\( 5 - k = 3 \)[/tex] which implies [tex]\( k = 2 \)[/tex].
- Therefore, the power of [tex]\( y \)[/tex], which is [tex]\( k \)[/tex], is 2.
Now substitute [tex]\( k = 2 \)[/tex] into the general term:
[tex]\[ T_2 = \binom{5}{2} (2x)^{5-2} y^2 = \binom{5}{2} (2x)^3 y^2 \][/tex]
Calculate the binomial coefficient:
[tex]\[ \binom{5}{2} = \frac{5!}{2!(5-2)!} = \frac{5 \times 4}{2 \times 1} = 10 \][/tex]
Now simplify [tex]\((2x)^3\)[/tex]:
[tex]\[ (2x)^3 = 8x^3 \][/tex]
Hence, the term [tex]\( T_2 \)[/tex] becomes:
[tex]\[ T_2 = 10 \cdot 8x^3 y^2 = 80x^3 y^2 \][/tex]
Thus, the coefficient of [tex]\( x^3 y^2 \)[/tex] in the expansion of [tex]\( (2x + y)^5 \)[/tex] is:
[tex]\[ \boxed{80} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.