Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the correct formula for the volume of the cone, let's start by recalling the volume formula for both a cone and a pyramid.
1. Volume of a Cone:
The volume [tex]\( V \)[/tex] of a cone is given by:
[tex]\[ V_{\text{cone}} = \frac{1}{3} \pi r^2 h \][/tex]
where:
- [tex]\( r \)[/tex] is the radius of the base,
- [tex]\( h \)[/tex] is the height.
2. Volume of a Pyramid:
The volume [tex]\( V \)[/tex] of a pyramid is given by:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \cdot \text{Base Area} \cdot \text{Height} \][/tex]
Now, let us consider the given information: the volume of the cone is [tex]\(\frac{\pi}{4}\)[/tex] times that of the volume calculation involving the shape it fits inside, which in this case is a pyramid. We need to determine which of the given expressions correctly represents this relationship.
3. Conversion:
The expressions to evaluate this relationship are:
- [tex]\(\frac{\pi}{4}(2 r^2 h)\)[/tex]
- [tex]\(\frac{\pi}{4}(4 r^2 h)\)[/tex]
- [tex]\(\frac{\pi}{4}\left(\frac{r^2 h}{3}\right)\)[/tex]
- [tex]\(\frac{\pi}{4}\left(\frac{4 r^2 h}{3}\right)\)[/tex]
First, calculate the volume of the cone directly using [tex]\(\frac{1}{3} \pi r^2 h\)[/tex]:
[tex]\[ V_{\text{cone}} = \frac{1}{3} \pi r^2 h \][/tex]
Next, consider each expression provided:
a. For the first expression [tex]\(\frac{\pi}{4}(2 r^2 h)\)[/tex]:
This would simplify to:
[tex]\[ V_1 = \frac{\pi}{4} \times 2 r^2 h = \frac{\pi}{2} r^2 h \][/tex]
This is not consistent with the volume of a cone.
b. For the second expression [tex]\(\frac{\pi}{4}(4 r^2 h)\)[/tex]:
[tex]\[ V_2 = \frac{\pi}{4} \times 4 r^2 h = \pi r^2 h \][/tex]
This is still not the formula for the volume of the cone.
c. For the third expression [tex]\(\frac{\pi}{4} \left(\frac{r^2 h}{3}\right)\)[/tex]:
[tex]\[ V_3 = \frac{\pi}{4} \times \frac{r^2 h}{3} = \frac{\pi r^2 h}{12} \][/tex]
This still doesn't match the cone volume formula.
d. For the fourth expression [tex]\(\frac{\pi}{4} \left(\frac{4 r^2 h}{3}\right)\)[/tex]:
[tex]\[ V_4 = \frac{\pi}{4} \times \frac{4 r^2 h}{3} = \frac{\pi}{3} r^2 h \][/tex]
This matches the cone's volume.
Thus, the correct expression representing the volume of the cone that is [tex]\(\frac{\pi}{4}\)[/tex] times the volume of the pyramid it fits inside is:
[tex]\[ \boxed{\frac{\pi}{4} \left(\frac{4 r^2 h}{3}\right)} \][/tex]
This ensures that the volume relationship aligns with the cone's volume [tex]\(\frac{1}{3} \pi r^2 h\)[/tex].
1. Volume of a Cone:
The volume [tex]\( V \)[/tex] of a cone is given by:
[tex]\[ V_{\text{cone}} = \frac{1}{3} \pi r^2 h \][/tex]
where:
- [tex]\( r \)[/tex] is the radius of the base,
- [tex]\( h \)[/tex] is the height.
2. Volume of a Pyramid:
The volume [tex]\( V \)[/tex] of a pyramid is given by:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \cdot \text{Base Area} \cdot \text{Height} \][/tex]
Now, let us consider the given information: the volume of the cone is [tex]\(\frac{\pi}{4}\)[/tex] times that of the volume calculation involving the shape it fits inside, which in this case is a pyramid. We need to determine which of the given expressions correctly represents this relationship.
3. Conversion:
The expressions to evaluate this relationship are:
- [tex]\(\frac{\pi}{4}(2 r^2 h)\)[/tex]
- [tex]\(\frac{\pi}{4}(4 r^2 h)\)[/tex]
- [tex]\(\frac{\pi}{4}\left(\frac{r^2 h}{3}\right)\)[/tex]
- [tex]\(\frac{\pi}{4}\left(\frac{4 r^2 h}{3}\right)\)[/tex]
First, calculate the volume of the cone directly using [tex]\(\frac{1}{3} \pi r^2 h\)[/tex]:
[tex]\[ V_{\text{cone}} = \frac{1}{3} \pi r^2 h \][/tex]
Next, consider each expression provided:
a. For the first expression [tex]\(\frac{\pi}{4}(2 r^2 h)\)[/tex]:
This would simplify to:
[tex]\[ V_1 = \frac{\pi}{4} \times 2 r^2 h = \frac{\pi}{2} r^2 h \][/tex]
This is not consistent with the volume of a cone.
b. For the second expression [tex]\(\frac{\pi}{4}(4 r^2 h)\)[/tex]:
[tex]\[ V_2 = \frac{\pi}{4} \times 4 r^2 h = \pi r^2 h \][/tex]
This is still not the formula for the volume of the cone.
c. For the third expression [tex]\(\frac{\pi}{4} \left(\frac{r^2 h}{3}\right)\)[/tex]:
[tex]\[ V_3 = \frac{\pi}{4} \times \frac{r^2 h}{3} = \frac{\pi r^2 h}{12} \][/tex]
This still doesn't match the cone volume formula.
d. For the fourth expression [tex]\(\frac{\pi}{4} \left(\frac{4 r^2 h}{3}\right)\)[/tex]:
[tex]\[ V_4 = \frac{\pi}{4} \times \frac{4 r^2 h}{3} = \frac{\pi}{3} r^2 h \][/tex]
This matches the cone's volume.
Thus, the correct expression representing the volume of the cone that is [tex]\(\frac{\pi}{4}\)[/tex] times the volume of the pyramid it fits inside is:
[tex]\[ \boxed{\frac{\pi}{4} \left(\frac{4 r^2 h}{3}\right)} \][/tex]
This ensures that the volume relationship aligns with the cone's volume [tex]\(\frac{1}{3} \pi r^2 h\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.