At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the correct formula for the volume of the cone, let's start by recalling the volume formula for both a cone and a pyramid.
1. Volume of a Cone:
The volume [tex]\( V \)[/tex] of a cone is given by:
[tex]\[ V_{\text{cone}} = \frac{1}{3} \pi r^2 h \][/tex]
where:
- [tex]\( r \)[/tex] is the radius of the base,
- [tex]\( h \)[/tex] is the height.
2. Volume of a Pyramid:
The volume [tex]\( V \)[/tex] of a pyramid is given by:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \cdot \text{Base Area} \cdot \text{Height} \][/tex]
Now, let us consider the given information: the volume of the cone is [tex]\(\frac{\pi}{4}\)[/tex] times that of the volume calculation involving the shape it fits inside, which in this case is a pyramid. We need to determine which of the given expressions correctly represents this relationship.
3. Conversion:
The expressions to evaluate this relationship are:
- [tex]\(\frac{\pi}{4}(2 r^2 h)\)[/tex]
- [tex]\(\frac{\pi}{4}(4 r^2 h)\)[/tex]
- [tex]\(\frac{\pi}{4}\left(\frac{r^2 h}{3}\right)\)[/tex]
- [tex]\(\frac{\pi}{4}\left(\frac{4 r^2 h}{3}\right)\)[/tex]
First, calculate the volume of the cone directly using [tex]\(\frac{1}{3} \pi r^2 h\)[/tex]:
[tex]\[ V_{\text{cone}} = \frac{1}{3} \pi r^2 h \][/tex]
Next, consider each expression provided:
a. For the first expression [tex]\(\frac{\pi}{4}(2 r^2 h)\)[/tex]:
This would simplify to:
[tex]\[ V_1 = \frac{\pi}{4} \times 2 r^2 h = \frac{\pi}{2} r^2 h \][/tex]
This is not consistent with the volume of a cone.
b. For the second expression [tex]\(\frac{\pi}{4}(4 r^2 h)\)[/tex]:
[tex]\[ V_2 = \frac{\pi}{4} \times 4 r^2 h = \pi r^2 h \][/tex]
This is still not the formula for the volume of the cone.
c. For the third expression [tex]\(\frac{\pi}{4} \left(\frac{r^2 h}{3}\right)\)[/tex]:
[tex]\[ V_3 = \frac{\pi}{4} \times \frac{r^2 h}{3} = \frac{\pi r^2 h}{12} \][/tex]
This still doesn't match the cone volume formula.
d. For the fourth expression [tex]\(\frac{\pi}{4} \left(\frac{4 r^2 h}{3}\right)\)[/tex]:
[tex]\[ V_4 = \frac{\pi}{4} \times \frac{4 r^2 h}{3} = \frac{\pi}{3} r^2 h \][/tex]
This matches the cone's volume.
Thus, the correct expression representing the volume of the cone that is [tex]\(\frac{\pi}{4}\)[/tex] times the volume of the pyramid it fits inside is:
[tex]\[ \boxed{\frac{\pi}{4} \left(\frac{4 r^2 h}{3}\right)} \][/tex]
This ensures that the volume relationship aligns with the cone's volume [tex]\(\frac{1}{3} \pi r^2 h\)[/tex].
1. Volume of a Cone:
The volume [tex]\( V \)[/tex] of a cone is given by:
[tex]\[ V_{\text{cone}} = \frac{1}{3} \pi r^2 h \][/tex]
where:
- [tex]\( r \)[/tex] is the radius of the base,
- [tex]\( h \)[/tex] is the height.
2. Volume of a Pyramid:
The volume [tex]\( V \)[/tex] of a pyramid is given by:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \cdot \text{Base Area} \cdot \text{Height} \][/tex]
Now, let us consider the given information: the volume of the cone is [tex]\(\frac{\pi}{4}\)[/tex] times that of the volume calculation involving the shape it fits inside, which in this case is a pyramid. We need to determine which of the given expressions correctly represents this relationship.
3. Conversion:
The expressions to evaluate this relationship are:
- [tex]\(\frac{\pi}{4}(2 r^2 h)\)[/tex]
- [tex]\(\frac{\pi}{4}(4 r^2 h)\)[/tex]
- [tex]\(\frac{\pi}{4}\left(\frac{r^2 h}{3}\right)\)[/tex]
- [tex]\(\frac{\pi}{4}\left(\frac{4 r^2 h}{3}\right)\)[/tex]
First, calculate the volume of the cone directly using [tex]\(\frac{1}{3} \pi r^2 h\)[/tex]:
[tex]\[ V_{\text{cone}} = \frac{1}{3} \pi r^2 h \][/tex]
Next, consider each expression provided:
a. For the first expression [tex]\(\frac{\pi}{4}(2 r^2 h)\)[/tex]:
This would simplify to:
[tex]\[ V_1 = \frac{\pi}{4} \times 2 r^2 h = \frac{\pi}{2} r^2 h \][/tex]
This is not consistent with the volume of a cone.
b. For the second expression [tex]\(\frac{\pi}{4}(4 r^2 h)\)[/tex]:
[tex]\[ V_2 = \frac{\pi}{4} \times 4 r^2 h = \pi r^2 h \][/tex]
This is still not the formula for the volume of the cone.
c. For the third expression [tex]\(\frac{\pi}{4} \left(\frac{r^2 h}{3}\right)\)[/tex]:
[tex]\[ V_3 = \frac{\pi}{4} \times \frac{r^2 h}{3} = \frac{\pi r^2 h}{12} \][/tex]
This still doesn't match the cone volume formula.
d. For the fourth expression [tex]\(\frac{\pi}{4} \left(\frac{4 r^2 h}{3}\right)\)[/tex]:
[tex]\[ V_4 = \frac{\pi}{4} \times \frac{4 r^2 h}{3} = \frac{\pi}{3} r^2 h \][/tex]
This matches the cone's volume.
Thus, the correct expression representing the volume of the cone that is [tex]\(\frac{\pi}{4}\)[/tex] times the volume of the pyramid it fits inside is:
[tex]\[ \boxed{\frac{\pi}{4} \left(\frac{4 r^2 h}{3}\right)} \][/tex]
This ensures that the volume relationship aligns with the cone's volume [tex]\(\frac{1}{3} \pi r^2 h\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.