Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:To determine the minimum initial speed \( v_0 \) required for the cricket to jump over a pipe of diameter \( D \), we can analyze the projectile motion of the cricket's jump.
### Assumptions:
1. The cricket launches itself with an initial angle \( \theta \) above the horizontal.
2. The highest point of its trajectory should be at least at the level of the top of the pipe for it to clear the pipe.
### Setup:
- Let \( h \) be the vertical distance from the ground to the top of the pipe.
- The pipe has a diameter \( D \), so its radius \( R \) is \( \frac{D}{2} \).
### Conditions for clearing the pipe:
1. **Vertical Motion:**
At the highest point of the jump, the vertical position \( y_{\text{max}} \) should satisfy:
\[ y_{\text{max}} \geq h + R \]
Since \( y_{\text{max}} = h + v_0^2 \sin^2 \theta / (2g) \), where \( g \) is the acceleration due to gravity, we get:
\[ h + \frac{v_0^2 \sin^2 \theta}{2g} \geq h + \frac{D}{2} \]
2. **Horizontal Motion:**
The horizontal distance \( x \) the cricket travels before landing should be at least \( D \):
\[ x = \frac{v_0^2 \sin 2\theta}{g} \geq D \]
### Minimum speed calculation:
From the horizontal motion condition:
\[ v_0^2 \sin 2\theta \geq Dg \]
To find the minimum \( v_0 \), we can choose \( \theta \) that satisfies both conditions. However, for the minimum initial speed \( v_0 \), we consider the limiting case where \( \theta \) is such that the projectile just clears the pipe at the highest point of its trajectory.
Therefore, the minimum initial speed \( v_0 \) required for the cricket to clear the pipe of diameter \( D \) is given by:
\[ v_0 = \sqrt{\frac{Dg}{\sin 2\theta}} \]
where \( \theta \) is the launch angle that satisfies both the vertical and horizontal clearance conditions.
Explanation:
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.