Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the equation [tex]\( 5^{(6x - 9)} = 125 \)[/tex], we follow these steps:
1. Rewrite 125 as a power of 5:
[tex]\[ 125 = 5^3 \][/tex]
So, the equation becomes:
[tex]\[ 5^{(6x - 9)} = 5^3 \][/tex]
2. Equate the exponents of the equation:
Since the bases are the same, the exponents must be equal:
[tex]\[ 6x - 9 = 3 \][/tex]
3. Add 9 to each side:
To solve for [tex]\( x \)[/tex], we first isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 6x - 9 + 9 = 3 + 9 \][/tex]
Simplifying, we get:
[tex]\[ 6x = 12 \][/tex]
4. Divide each side by 6:
Finally, to solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{6x}{6} = \frac{12}{6} \][/tex]
Simplifying, we get:
[tex]\[ x = 2 \][/tex]
So, the step-by-step solution is as follows:
1. Rewrite 125 as a power of 5
2. Equate the exponents of the equation
3. Add 9 to each side
4. Divide each side by 6
1. Rewrite 125 as a power of 5:
[tex]\[ 125 = 5^3 \][/tex]
So, the equation becomes:
[tex]\[ 5^{(6x - 9)} = 5^3 \][/tex]
2. Equate the exponents of the equation:
Since the bases are the same, the exponents must be equal:
[tex]\[ 6x - 9 = 3 \][/tex]
3. Add 9 to each side:
To solve for [tex]\( x \)[/tex], we first isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 6x - 9 + 9 = 3 + 9 \][/tex]
Simplifying, we get:
[tex]\[ 6x = 12 \][/tex]
4. Divide each side by 6:
Finally, to solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{6x}{6} = \frac{12}{6} \][/tex]
Simplifying, we get:
[tex]\[ x = 2 \][/tex]
So, the step-by-step solution is as follows:
1. Rewrite 125 as a power of 5
2. Equate the exponents of the equation
3. Add 9 to each side
4. Divide each side by 6
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.