Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

A biologist is studying the exponential growth of a colony of bacterial cells. The table gives the number of cells, [tex][tex]$y$[/tex][/tex], in the colony over time, [tex][tex]$x$[/tex][/tex], in hours.

\begin{tabular}{|c|c|}
\hline Time, [tex][tex]$x$[/tex][/tex] (hours) & Number of Cells, [tex][tex]$y$[/tex][/tex] \\
\hline 0 & 100 \\
\hline 1 & 200 \\
\hline 2 & 400 \\
\hline [tex][tex]$h$[/tex][/tex] & 6,400 \\
\hline
\end{tabular}

Replace the values of [tex][tex]$A, b, x$[/tex][/tex], and [tex][tex]$y$[/tex][/tex] to write an exponential equation that represents the number of cells present at [tex][tex]$h$[/tex][/tex] hours.


Sagot :

To determine the values of [tex]\( A \)[/tex], [tex]\( b \)[/tex], [tex]\( x \)[/tex], and [tex]\( y \)[/tex] in the exponential growth equation for the bacterial cells, follow these steps:

1. Identifying the General Form of the Exponential Growth Equation:
An exponential growth equation typically has the form:
[tex]\[ y = A \cdot b^x \][/tex]
where
- [tex]\( y \)[/tex] is the number of bacterial cells,
- [tex]\( A \)[/tex] is the initial amount of cells,
- [tex]\( b \)[/tex] is the base representing the growth factor,
- [tex]\( x \)[/tex] is the time in hours.

2. Determine the Initial Amount of Cells ([tex]\(A\)[/tex]):
From the given data, at time [tex]\( x = 0 \)[/tex] hours, the number of cells [tex]\( y \)[/tex] is 100. Therefore, the initial amount ([tex]\( A \)[/tex]) is:
[tex]\[ A = 100 \][/tex]

3. Calculate the Growth Factor ([tex]\(b\)[/tex]):
We can use the data from [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex] to find [tex]\( b \)[/tex]:
- At [tex]\( x = 0 \)[/tex] hours, [tex]\( y = 100 \)[/tex]
- At [tex]\( x = 1 \)[/tex] hour, [tex]\( y = 200 \)[/tex]

The equation at [tex]\( x = 1 \)[/tex] hour is:
[tex]\[ 200 = 100 \cdot b \][/tex]
Solving for [tex]\( b \)[/tex]:
[tex]\[ b = \frac{200}{100} = 2 \][/tex]

4. Identify the Exponential Equation:
Substitute [tex]\( A = 100 \)[/tex] and [tex]\( b = 2 \)[/tex] into the general form. The exponential equation for the number of cells is:
[tex]\[ y = 100 \cdot 2^x \][/tex]

5. Find the Number of Hours ([tex]\(h\)[/tex]) Needed for 6400 Cells:
When [tex]\( y = 6400 \)[/tex], we need to solve for [tex]\( x \)[/tex] (which we denote as [tex]\( h \)[/tex]):
[tex]\[ 6400 = 100 \cdot 2^h \][/tex]
First, divide both sides by 100:
[tex]\[ 64 = 2^h \][/tex]
Using properties of exponents, we know:
[tex]\[ 2^6 = 64 \][/tex]
Thus,
[tex]\[ h = 6 \][/tex]

6. Final Exponential Equation:
Based on the calculated values, the exponential equation for the growth of the bacterial cells, accounting for the given values, is:
[tex]\[ y = 100 \cdot 2^x \][/tex]
Specifically, for [tex]\( h = 6 \)[/tex]:
[tex]\[ 6400 = 100 \cdot 2^6 \][/tex]

Therefore, this detailed, step-by-step solution shows that the values for [tex]\( A, b, h \)[/tex], and [tex]\( y \)[/tex] are 100, 2, 6, and 6400, respectively, in the context of exponential growth of bacterial cells.