Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the values of [tex]\( A \)[/tex], [tex]\( b \)[/tex], [tex]\( x \)[/tex], and [tex]\( y \)[/tex] in the exponential growth equation for the bacterial cells, follow these steps:
1. Identifying the General Form of the Exponential Growth Equation:
An exponential growth equation typically has the form:
[tex]\[ y = A \cdot b^x \][/tex]
where
- [tex]\( y \)[/tex] is the number of bacterial cells,
- [tex]\( A \)[/tex] is the initial amount of cells,
- [tex]\( b \)[/tex] is the base representing the growth factor,
- [tex]\( x \)[/tex] is the time in hours.
2. Determine the Initial Amount of Cells ([tex]\(A\)[/tex]):
From the given data, at time [tex]\( x = 0 \)[/tex] hours, the number of cells [tex]\( y \)[/tex] is 100. Therefore, the initial amount ([tex]\( A \)[/tex]) is:
[tex]\[ A = 100 \][/tex]
3. Calculate the Growth Factor ([tex]\(b\)[/tex]):
We can use the data from [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex] to find [tex]\( b \)[/tex]:
- At [tex]\( x = 0 \)[/tex] hours, [tex]\( y = 100 \)[/tex]
- At [tex]\( x = 1 \)[/tex] hour, [tex]\( y = 200 \)[/tex]
The equation at [tex]\( x = 1 \)[/tex] hour is:
[tex]\[ 200 = 100 \cdot b \][/tex]
Solving for [tex]\( b \)[/tex]:
[tex]\[ b = \frac{200}{100} = 2 \][/tex]
4. Identify the Exponential Equation:
Substitute [tex]\( A = 100 \)[/tex] and [tex]\( b = 2 \)[/tex] into the general form. The exponential equation for the number of cells is:
[tex]\[ y = 100 \cdot 2^x \][/tex]
5. Find the Number of Hours ([tex]\(h\)[/tex]) Needed for 6400 Cells:
When [tex]\( y = 6400 \)[/tex], we need to solve for [tex]\( x \)[/tex] (which we denote as [tex]\( h \)[/tex]):
[tex]\[ 6400 = 100 \cdot 2^h \][/tex]
First, divide both sides by 100:
[tex]\[ 64 = 2^h \][/tex]
Using properties of exponents, we know:
[tex]\[ 2^6 = 64 \][/tex]
Thus,
[tex]\[ h = 6 \][/tex]
6. Final Exponential Equation:
Based on the calculated values, the exponential equation for the growth of the bacterial cells, accounting for the given values, is:
[tex]\[ y = 100 \cdot 2^x \][/tex]
Specifically, for [tex]\( h = 6 \)[/tex]:
[tex]\[ 6400 = 100 \cdot 2^6 \][/tex]
Therefore, this detailed, step-by-step solution shows that the values for [tex]\( A, b, h \)[/tex], and [tex]\( y \)[/tex] are 100, 2, 6, and 6400, respectively, in the context of exponential growth of bacterial cells.
1. Identifying the General Form of the Exponential Growth Equation:
An exponential growth equation typically has the form:
[tex]\[ y = A \cdot b^x \][/tex]
where
- [tex]\( y \)[/tex] is the number of bacterial cells,
- [tex]\( A \)[/tex] is the initial amount of cells,
- [tex]\( b \)[/tex] is the base representing the growth factor,
- [tex]\( x \)[/tex] is the time in hours.
2. Determine the Initial Amount of Cells ([tex]\(A\)[/tex]):
From the given data, at time [tex]\( x = 0 \)[/tex] hours, the number of cells [tex]\( y \)[/tex] is 100. Therefore, the initial amount ([tex]\( A \)[/tex]) is:
[tex]\[ A = 100 \][/tex]
3. Calculate the Growth Factor ([tex]\(b\)[/tex]):
We can use the data from [tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex] to find [tex]\( b \)[/tex]:
- At [tex]\( x = 0 \)[/tex] hours, [tex]\( y = 100 \)[/tex]
- At [tex]\( x = 1 \)[/tex] hour, [tex]\( y = 200 \)[/tex]
The equation at [tex]\( x = 1 \)[/tex] hour is:
[tex]\[ 200 = 100 \cdot b \][/tex]
Solving for [tex]\( b \)[/tex]:
[tex]\[ b = \frac{200}{100} = 2 \][/tex]
4. Identify the Exponential Equation:
Substitute [tex]\( A = 100 \)[/tex] and [tex]\( b = 2 \)[/tex] into the general form. The exponential equation for the number of cells is:
[tex]\[ y = 100 \cdot 2^x \][/tex]
5. Find the Number of Hours ([tex]\(h\)[/tex]) Needed for 6400 Cells:
When [tex]\( y = 6400 \)[/tex], we need to solve for [tex]\( x \)[/tex] (which we denote as [tex]\( h \)[/tex]):
[tex]\[ 6400 = 100 \cdot 2^h \][/tex]
First, divide both sides by 100:
[tex]\[ 64 = 2^h \][/tex]
Using properties of exponents, we know:
[tex]\[ 2^6 = 64 \][/tex]
Thus,
[tex]\[ h = 6 \][/tex]
6. Final Exponential Equation:
Based on the calculated values, the exponential equation for the growth of the bacterial cells, accounting for the given values, is:
[tex]\[ y = 100 \cdot 2^x \][/tex]
Specifically, for [tex]\( h = 6 \)[/tex]:
[tex]\[ 6400 = 100 \cdot 2^6 \][/tex]
Therefore, this detailed, step-by-step solution shows that the values for [tex]\( A, b, h \)[/tex], and [tex]\( y \)[/tex] are 100, 2, 6, and 6400, respectively, in the context of exponential growth of bacterial cells.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.