Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the equation of [tex]\( g(x) \)[/tex] based on the given function [tex]\( f(x) = (x - 3)^2 \)[/tex] and the information about the vertical stretch, we will follow these steps:
1. Identify the given function: [tex]\( f(x) = (x - 3)^2 \)[/tex]
2. Vertical stretch factor: The stretch factor is given as 2. This means the output of the function [tex]\( f(x) \)[/tex] will be multiplied by 2 to give the new function [tex]\( g(x) \)[/tex].
3. Apply the vertical stretch to the function: To incorporate the vertical stretch factor into [tex]\( f(x) \)[/tex], we multiply the entire function by the stretch factor.
So, [tex]\( g(x) = 2 \cdot f(x) \)[/tex].
4. Substitute [tex]\( f(x) \)[/tex] into the equation: Replace [tex]\( f(x) \)[/tex] with [tex]\((x - 3)^2\)[/tex].
Therefore, [tex]\( g(x) = 2 \cdot (x - 3)^2 \)[/tex].
So, the equation of [tex]\( g(x) \)[/tex] is:
[tex]\[ g(x) = 2(x - 3)^2 \][/tex]
To confirm, let's evaluate [tex]\( g(x) \)[/tex] at some specific points, ensuring our transformation is correct:
- For [tex]\( x = 0 \)[/tex]:
[tex]\( g(0) = 2(0 - 3)^2 = 2 \cdot 9 = 18 \)[/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\( g(1) = 2(1 - 3)^2 = 2 \cdot 4 = 8 \)[/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\( g(2) = 2(2 - 3)^2 = 2 \cdot 1 = 2 \)[/tex]
These evaluations confirm that our derived equation [tex]\( g(x) = 2(x - 3)^2 \)[/tex] gives the correct function values as expected.
1. Identify the given function: [tex]\( f(x) = (x - 3)^2 \)[/tex]
2. Vertical stretch factor: The stretch factor is given as 2. This means the output of the function [tex]\( f(x) \)[/tex] will be multiplied by 2 to give the new function [tex]\( g(x) \)[/tex].
3. Apply the vertical stretch to the function: To incorporate the vertical stretch factor into [tex]\( f(x) \)[/tex], we multiply the entire function by the stretch factor.
So, [tex]\( g(x) = 2 \cdot f(x) \)[/tex].
4. Substitute [tex]\( f(x) \)[/tex] into the equation: Replace [tex]\( f(x) \)[/tex] with [tex]\((x - 3)^2\)[/tex].
Therefore, [tex]\( g(x) = 2 \cdot (x - 3)^2 \)[/tex].
So, the equation of [tex]\( g(x) \)[/tex] is:
[tex]\[ g(x) = 2(x - 3)^2 \][/tex]
To confirm, let's evaluate [tex]\( g(x) \)[/tex] at some specific points, ensuring our transformation is correct:
- For [tex]\( x = 0 \)[/tex]:
[tex]\( g(0) = 2(0 - 3)^2 = 2 \cdot 9 = 18 \)[/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\( g(1) = 2(1 - 3)^2 = 2 \cdot 4 = 8 \)[/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\( g(2) = 2(2 - 3)^2 = 2 \cdot 1 = 2 \)[/tex]
These evaluations confirm that our derived equation [tex]\( g(x) = 2(x - 3)^2 \)[/tex] gives the correct function values as expected.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.