Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To calculate the upthrust (buoyant force) experienced by a piece of stone when it is fully submerged in water, we will go through the following steps:
1. Convert the volume of the stone from cm³ to m³:
- The given volume of the stone is [tex]\( 400 \text{ cm}^3 \)[/tex].
- Conversion factor: [tex]\( 1 \text{ cm}^3 = 1 \times 10^{-6} \text{ m}^3 \)[/tex].
- Volume in m³ is [tex]\( 400 \text{ cm}^3 \times 1 \times 10^{-6} \text{ m}^3/\text{cm}^3 \)[/tex].
[tex]\[ \text{Volume of the stone} = 0.0004 \text{ m}^3 \][/tex]
2. Identify the given density of water and the acceleration due to gravity:
- Density of water, [tex]\( \rho_{\text{water}} = 1000 \text{ kg/m}^3 \)[/tex].
- Acceleration due to gravity, [tex]\( g = 9.81 \text{ m/s}^2 \)[/tex].
3. Calculate the upthrust (buoyant force) using the formula:
[tex]\[ \text{Upthrust, } F = \rho \times V \times g \][/tex]
Where:
- [tex]\( \rho \)[/tex] is the density of the fluid (water in this case).
- [tex]\( V \)[/tex] is the volume of the object submerged in the fluid.
- [tex]\( g \)[/tex] is the acceleration due to gravity.
Substitute the values into the formula:
[tex]\[ F = 1000 \text{ kg/m}^3 \times 0.0004 \text{ m}^3 \times 9.81 \text{ m/s}^2 \][/tex]
4. Perform the multiplication to find the upthrust:
[tex]\[ F = 1000 \times 0.0004 \times 9.81 \][/tex]
5. Calculate the numerical result:
[tex]\[ F \approx 3.92 \text{ N} \][/tex]
Thus, the upthrust (buoyant force) acting on the stone when it is fully submerged in water is approximately [tex]\( 3.92 \text{ N} \)[/tex].
1. Convert the volume of the stone from cm³ to m³:
- The given volume of the stone is [tex]\( 400 \text{ cm}^3 \)[/tex].
- Conversion factor: [tex]\( 1 \text{ cm}^3 = 1 \times 10^{-6} \text{ m}^3 \)[/tex].
- Volume in m³ is [tex]\( 400 \text{ cm}^3 \times 1 \times 10^{-6} \text{ m}^3/\text{cm}^3 \)[/tex].
[tex]\[ \text{Volume of the stone} = 0.0004 \text{ m}^3 \][/tex]
2. Identify the given density of water and the acceleration due to gravity:
- Density of water, [tex]\( \rho_{\text{water}} = 1000 \text{ kg/m}^3 \)[/tex].
- Acceleration due to gravity, [tex]\( g = 9.81 \text{ m/s}^2 \)[/tex].
3. Calculate the upthrust (buoyant force) using the formula:
[tex]\[ \text{Upthrust, } F = \rho \times V \times g \][/tex]
Where:
- [tex]\( \rho \)[/tex] is the density of the fluid (water in this case).
- [tex]\( V \)[/tex] is the volume of the object submerged in the fluid.
- [tex]\( g \)[/tex] is the acceleration due to gravity.
Substitute the values into the formula:
[tex]\[ F = 1000 \text{ kg/m}^3 \times 0.0004 \text{ m}^3 \times 9.81 \text{ m/s}^2 \][/tex]
4. Perform the multiplication to find the upthrust:
[tex]\[ F = 1000 \times 0.0004 \times 9.81 \][/tex]
5. Calculate the numerical result:
[tex]\[ F \approx 3.92 \text{ N} \][/tex]
Thus, the upthrust (buoyant force) acting on the stone when it is fully submerged in water is approximately [tex]\( 3.92 \text{ N} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.