Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

A line intersects the points [tex](8, 2)[/tex] and [tex](12, -10)[/tex].

What is the slope of the line in simplest form?

[tex]\[ m = [?] \][/tex]

Sagot :

To find the slope [tex]\( m \)[/tex] of the line that intersects the points [tex]\((8, 2)\)[/tex] and [tex]\((12, -10)\)[/tex], we need to use the slope formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, the coordinates of the points are:
- Point 1: [tex]\((x_1, y_1) = (8, 2)\)[/tex]
- Point 2: [tex]\((x_2, y_2) = (12, -10)\)[/tex]

First, calculate the difference in the y-coordinates ([tex]\( y_2 - y_1 \)[/tex]):

[tex]\[ y_2 - y_1 = -10 - 2 = -12 \][/tex]

Next, calculate the difference in the x-coordinates ([tex]\( x_2 - x_1 \)[/tex]):

[tex]\[ x_2 - x_1 = 12 - 8 = 4 \][/tex]

Now, substitute these differences into the slope formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-12}{4} \][/tex]

Simplify the fraction:

[tex]\[ m = \frac{-12}{4} = -3 \][/tex]

Therefore, the slope of the line in simplest form is:

[tex]\[ m = -3 \][/tex]