At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's go through the steps to find the area of triangle [tex]\( \triangle ABC \)[/tex] using Heron's formula. The lengths of the sides of the triangle are:
[tex]\( a = 5 \)[/tex] yards, [tex]\( b = 6 \)[/tex] yards, and [tex]\( c = 7 \)[/tex] yards.
1. Calculate the semi-perimeter [tex]\( s \)[/tex]:
The semi-perimeter [tex]\( s \)[/tex] is given by:
[tex]\[ s = \frac{a + b + c}{2} \][/tex]
Plug in the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ s = \frac{5 + 6 + 7}{2} = \frac{18}{2} = 9 \text{ yards} \][/tex]
2. Calculate the area [tex]\( A \)[/tex] using Heron's formula:
Heron's formula for the area [tex]\( A \)[/tex] is:
[tex]\[ A = \sqrt{s(s - a)(s - b)(s - c)} \][/tex]
Substitute the values from the previous calculations:
[tex]\[ A = \sqrt{9(9 - 5)(9 - 6)(9 - 7)} \][/tex]
Simplify the expression inside the square root:
[tex]\[ A = \sqrt{9 \times 4 \times 3 \times 2} \][/tex]
Continue simplifying:
[tex]\[ A = \sqrt{9 \times 24} = \sqrt{216} \][/tex]
Take the square root of 216:
[tex]\[ A \approx 14.696938456699069 \text{ square yards} \][/tex]
Therefore, the area of [tex]\(\triangle ABC\)[/tex] is approximately 14.696938456699069 square yards.
[tex]\( a = 5 \)[/tex] yards, [tex]\( b = 6 \)[/tex] yards, and [tex]\( c = 7 \)[/tex] yards.
1. Calculate the semi-perimeter [tex]\( s \)[/tex]:
The semi-perimeter [tex]\( s \)[/tex] is given by:
[tex]\[ s = \frac{a + b + c}{2} \][/tex]
Plug in the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ s = \frac{5 + 6 + 7}{2} = \frac{18}{2} = 9 \text{ yards} \][/tex]
2. Calculate the area [tex]\( A \)[/tex] using Heron's formula:
Heron's formula for the area [tex]\( A \)[/tex] is:
[tex]\[ A = \sqrt{s(s - a)(s - b)(s - c)} \][/tex]
Substitute the values from the previous calculations:
[tex]\[ A = \sqrt{9(9 - 5)(9 - 6)(9 - 7)} \][/tex]
Simplify the expression inside the square root:
[tex]\[ A = \sqrt{9 \times 4 \times 3 \times 2} \][/tex]
Continue simplifying:
[tex]\[ A = \sqrt{9 \times 24} = \sqrt{216} \][/tex]
Take the square root of 216:
[tex]\[ A \approx 14.696938456699069 \text{ square yards} \][/tex]
Therefore, the area of [tex]\(\triangle ABC\)[/tex] is approximately 14.696938456699069 square yards.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.