Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's go through the steps to find the area of triangle [tex]\( \triangle ABC \)[/tex] using Heron's formula. The lengths of the sides of the triangle are:
[tex]\( a = 5 \)[/tex] yards, [tex]\( b = 6 \)[/tex] yards, and [tex]\( c = 7 \)[/tex] yards.
1. Calculate the semi-perimeter [tex]\( s \)[/tex]:
The semi-perimeter [tex]\( s \)[/tex] is given by:
[tex]\[ s = \frac{a + b + c}{2} \][/tex]
Plug in the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ s = \frac{5 + 6 + 7}{2} = \frac{18}{2} = 9 \text{ yards} \][/tex]
2. Calculate the area [tex]\( A \)[/tex] using Heron's formula:
Heron's formula for the area [tex]\( A \)[/tex] is:
[tex]\[ A = \sqrt{s(s - a)(s - b)(s - c)} \][/tex]
Substitute the values from the previous calculations:
[tex]\[ A = \sqrt{9(9 - 5)(9 - 6)(9 - 7)} \][/tex]
Simplify the expression inside the square root:
[tex]\[ A = \sqrt{9 \times 4 \times 3 \times 2} \][/tex]
Continue simplifying:
[tex]\[ A = \sqrt{9 \times 24} = \sqrt{216} \][/tex]
Take the square root of 216:
[tex]\[ A \approx 14.696938456699069 \text{ square yards} \][/tex]
Therefore, the area of [tex]\(\triangle ABC\)[/tex] is approximately 14.696938456699069 square yards.
[tex]\( a = 5 \)[/tex] yards, [tex]\( b = 6 \)[/tex] yards, and [tex]\( c = 7 \)[/tex] yards.
1. Calculate the semi-perimeter [tex]\( s \)[/tex]:
The semi-perimeter [tex]\( s \)[/tex] is given by:
[tex]\[ s = \frac{a + b + c}{2} \][/tex]
Plug in the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ s = \frac{5 + 6 + 7}{2} = \frac{18}{2} = 9 \text{ yards} \][/tex]
2. Calculate the area [tex]\( A \)[/tex] using Heron's formula:
Heron's formula for the area [tex]\( A \)[/tex] is:
[tex]\[ A = \sqrt{s(s - a)(s - b)(s - c)} \][/tex]
Substitute the values from the previous calculations:
[tex]\[ A = \sqrt{9(9 - 5)(9 - 6)(9 - 7)} \][/tex]
Simplify the expression inside the square root:
[tex]\[ A = \sqrt{9 \times 4 \times 3 \times 2} \][/tex]
Continue simplifying:
[tex]\[ A = \sqrt{9 \times 24} = \sqrt{216} \][/tex]
Take the square root of 216:
[tex]\[ A \approx 14.696938456699069 \text{ square yards} \][/tex]
Therefore, the area of [tex]\(\triangle ABC\)[/tex] is approximately 14.696938456699069 square yards.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.