Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's verify the trigonometric identity [tex]\(\sec^2 \theta = 1 + \tan^2 \theta\)[/tex].
### Step-by-Step Solution:
1. Recall Basic Trigonometric Identities:
- The secant function is defined as [tex]\(\sec \theta = \frac{1}{\cos \theta}\)[/tex].
- The tangent function is defined as [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex].
2. Express [tex]\(\sec^2 \theta\)[/tex] in Terms of [tex]\(\cos \theta\)[/tex]:
Since [tex]\(\sec \theta = \frac{1}{\cos \theta}\)[/tex], we can write:
[tex]\[ \sec^2 \theta = \left( \frac{1}{\cos \theta} \right)^2 = \frac{1}{\cos^2 \theta} \][/tex]
3. Express [tex]\(\tan^2 \theta\)[/tex] in Terms of [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex]:
Since [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex], we can write:
[tex]\[ \tan^2 \theta = \left( \frac{\sin \theta}{\cos \theta} \right)^2 = \frac{\sin^2 \theta}{\cos^2 \theta} \][/tex]
4. Combine and Simplify:
Substituting these expressions into the right-hand side of the given identity:
[tex]\[ 1 + \tan^2 \theta = 1 + \frac{\sin^2 \theta}{\cos^2 \theta} \][/tex]
To combine these terms over a common denominator, note that 1 can be written as [tex]\(\frac{\cos^2 \theta}{\cos^2 \theta}\)[/tex]:
[tex]\[ 1 + \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{\cos^2 \theta}{\cos^2 \theta} + \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta} \][/tex]
5. Use the Pythagorean Identity:
Recall the Pythagorean identity:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]
Substituting this into the equation, we get:
[tex]\[ \frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta} \][/tex]
6. Compare Both Sides:
We now have:
[tex]\[ 1 + \tan^2 \theta = \frac{1}{\cos^2 \theta} \][/tex]
And:
[tex]\[ \sec^2 \theta = \frac{1}{\cos^2 \theta} \][/tex]
Since both sides of the equation equal [tex]\(\frac{1}{\cos^2 \theta}\)[/tex], we have proven that the identity holds true.
### Conclusion:
We have verified the trigonometric identity [tex]\(\sec^2 \theta = 1 + \tan^2 \theta\)[/tex] through a series of logical steps and using fundamental trigonometric identities. Therefore, the identity is indeed valid and true.
### Step-by-Step Solution:
1. Recall Basic Trigonometric Identities:
- The secant function is defined as [tex]\(\sec \theta = \frac{1}{\cos \theta}\)[/tex].
- The tangent function is defined as [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex].
2. Express [tex]\(\sec^2 \theta\)[/tex] in Terms of [tex]\(\cos \theta\)[/tex]:
Since [tex]\(\sec \theta = \frac{1}{\cos \theta}\)[/tex], we can write:
[tex]\[ \sec^2 \theta = \left( \frac{1}{\cos \theta} \right)^2 = \frac{1}{\cos^2 \theta} \][/tex]
3. Express [tex]\(\tan^2 \theta\)[/tex] in Terms of [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex]:
Since [tex]\(\tan \theta = \frac{\sin \theta}{\cos \theta}\)[/tex], we can write:
[tex]\[ \tan^2 \theta = \left( \frac{\sin \theta}{\cos \theta} \right)^2 = \frac{\sin^2 \theta}{\cos^2 \theta} \][/tex]
4. Combine and Simplify:
Substituting these expressions into the right-hand side of the given identity:
[tex]\[ 1 + \tan^2 \theta = 1 + \frac{\sin^2 \theta}{\cos^2 \theta} \][/tex]
To combine these terms over a common denominator, note that 1 can be written as [tex]\(\frac{\cos^2 \theta}{\cos^2 \theta}\)[/tex]:
[tex]\[ 1 + \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{\cos^2 \theta}{\cos^2 \theta} + \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta} \][/tex]
5. Use the Pythagorean Identity:
Recall the Pythagorean identity:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]
Substituting this into the equation, we get:
[tex]\[ \frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta} \][/tex]
6. Compare Both Sides:
We now have:
[tex]\[ 1 + \tan^2 \theta = \frac{1}{\cos^2 \theta} \][/tex]
And:
[tex]\[ \sec^2 \theta = \frac{1}{\cos^2 \theta} \][/tex]
Since both sides of the equation equal [tex]\(\frac{1}{\cos^2 \theta}\)[/tex], we have proven that the identity holds true.
### Conclusion:
We have verified the trigonometric identity [tex]\(\sec^2 \theta = 1 + \tan^2 \theta\)[/tex] through a series of logical steps and using fundamental trigonometric identities. Therefore, the identity is indeed valid and true.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.