Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine if the triangle [tex]\(\Delta XYZ\)[/tex] is a right triangle, we need to check the slopes of the lines [tex]\(\overline{XY}\)[/tex] and [tex]\(\overline{XZ}\)[/tex]. For [tex]\(\Delta XYZ\)[/tex] to be a right triangle at [tex]\(X\)[/tex], the lines [tex]\(\overline{XY}\)[/tex] and [tex]\(\overline{XZ}\)[/tex] should be perpendicular. This happens if the slopes of these lines are opposite reciprocals.
We are given the coordinates of the points:
- [tex]\(X(0, -4)\)[/tex]
- [tex]\(Y(2, -3)\)[/tex]
- [tex]\(Z(2, -6)\)[/tex]
First, we calculate the slope of line [tex]\(\overline{XY}\)[/tex]:
[tex]\[ \text{slope}_{XY} = \frac{Y_2 - Y_1}{X_2 - X_1} = \frac{-3 - (-4)}{2 - 0} = \frac{-3 + 4}{2 - 0} = \frac{1}{2} \][/tex]
Next, we calculate the slope of line [tex]\(\overline{XZ}\)[/tex]:
[tex]\[ \text{slope}_{XZ} = \frac{Z_2 - Z_1}{X_2 - X_1} = \frac{-6 - (-4)}{2 - 0} = \frac{-6 + 4}{2 - 0} = \frac{-2}{2} = -1 \][/tex]
To check if [tex]\(\overline{XY}\)[/tex] and [tex]\(\overline{XZ}\)[/tex] are perpendicular, we need to see if the product of the slopes is [tex]\(-1\)[/tex]:
[tex]\[ \text{slope}_{XY} \times \text{slope}_{XZ} = \frac{1}{2} \times (-1) = -\frac{1}{2} \][/tex]
The product of the slopes [tex]\(\frac{1}{2}\)[/tex] and [tex]\(-1\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex], which is not [tex]\(-1\)[/tex]. Therefore, the lines [tex]\(\overline{XY}\)[/tex] and [tex]\(\overline{XZ}\)[/tex] are not perpendicular.
Thus, Lydia's assertion is not correct. Therefore, the correct answer is:
No; the slopes of [tex]\(\overline{XY}\)[/tex] and [tex]\(\overline{XZ}\)[/tex] are not opposite reciprocals.
We are given the coordinates of the points:
- [tex]\(X(0, -4)\)[/tex]
- [tex]\(Y(2, -3)\)[/tex]
- [tex]\(Z(2, -6)\)[/tex]
First, we calculate the slope of line [tex]\(\overline{XY}\)[/tex]:
[tex]\[ \text{slope}_{XY} = \frac{Y_2 - Y_1}{X_2 - X_1} = \frac{-3 - (-4)}{2 - 0} = \frac{-3 + 4}{2 - 0} = \frac{1}{2} \][/tex]
Next, we calculate the slope of line [tex]\(\overline{XZ}\)[/tex]:
[tex]\[ \text{slope}_{XZ} = \frac{Z_2 - Z_1}{X_2 - X_1} = \frac{-6 - (-4)}{2 - 0} = \frac{-6 + 4}{2 - 0} = \frac{-2}{2} = -1 \][/tex]
To check if [tex]\(\overline{XY}\)[/tex] and [tex]\(\overline{XZ}\)[/tex] are perpendicular, we need to see if the product of the slopes is [tex]\(-1\)[/tex]:
[tex]\[ \text{slope}_{XY} \times \text{slope}_{XZ} = \frac{1}{2} \times (-1) = -\frac{1}{2} \][/tex]
The product of the slopes [tex]\(\frac{1}{2}\)[/tex] and [tex]\(-1\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex], which is not [tex]\(-1\)[/tex]. Therefore, the lines [tex]\(\overline{XY}\)[/tex] and [tex]\(\overline{XZ}\)[/tex] are not perpendicular.
Thus, Lydia's assertion is not correct. Therefore, the correct answer is:
No; the slopes of [tex]\(\overline{XY}\)[/tex] and [tex]\(\overline{XZ}\)[/tex] are not opposite reciprocals.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.