At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! To solve for the second number given that the product of two rational numbers is [tex]\(\frac{9}{11}\)[/tex] and one of the numbers is [tex]\(-33\)[/tex], follow these steps:
1. Let's denote the first number as [tex]\( \text{number1} \)[/tex] and the second number as [tex]\( \text{number2} \)[/tex].
2. According to the problem, the product of [tex]\(\text{number1}\)[/tex] and [tex]\(\text{number2}\)[/tex] is given by:
[tex]\[ \text{number1} \times \text{number2} = \frac{9}{11} \][/tex]
3. We know that:
[tex]\[ \text{number1} = -33 \][/tex]
4. Substitute [tex]\(\text{number1}\)[/tex] into the equation:
[tex]\[ -33 \times \text{number2} = \frac{9}{11} \][/tex]
5. To solve for [tex]\(\text{number2}\)[/tex], divide both sides of the equation by [tex]\(-33\)[/tex]:
[tex]\[ \text{number2} = \frac{\frac{9}{11}}{-33} \][/tex]
6. When dividing by [tex]\(-33\)[/tex], it's equivalent to multiplying by [tex]\(\frac{1}{-33}\)[/tex]:
[tex]\[ \text{number2} = \frac{9}{11} \times \frac{1}{-33} \][/tex]
7. Simplifying the multiplication:
[tex]\[ \text{number2} = \frac{9 \times 1}{11 \times (-33)} = \frac{9}{-363} \][/tex]
8. Further simplification gives:
[tex]\[ \text{number2} = -\frac{9}{363} \][/tex]
9. Reducing the fraction by dividing both the numerator and the denominator by the greatest common divisor, which here is 3:
[tex]\[ \text{number2} = -\frac{9 \div 3}{363 \div 3} = -\frac{3}{121} \][/tex]
10. Converting this fraction into its decimal form, we get:
[tex]\[ \text{number2} \approx -0.024793388429752067 \][/tex]
Therefore, the second number is approximately [tex]\(-0.024793388429752067\)[/tex].
1. Let's denote the first number as [tex]\( \text{number1} \)[/tex] and the second number as [tex]\( \text{number2} \)[/tex].
2. According to the problem, the product of [tex]\(\text{number1}\)[/tex] and [tex]\(\text{number2}\)[/tex] is given by:
[tex]\[ \text{number1} \times \text{number2} = \frac{9}{11} \][/tex]
3. We know that:
[tex]\[ \text{number1} = -33 \][/tex]
4. Substitute [tex]\(\text{number1}\)[/tex] into the equation:
[tex]\[ -33 \times \text{number2} = \frac{9}{11} \][/tex]
5. To solve for [tex]\(\text{number2}\)[/tex], divide both sides of the equation by [tex]\(-33\)[/tex]:
[tex]\[ \text{number2} = \frac{\frac{9}{11}}{-33} \][/tex]
6. When dividing by [tex]\(-33\)[/tex], it's equivalent to multiplying by [tex]\(\frac{1}{-33}\)[/tex]:
[tex]\[ \text{number2} = \frac{9}{11} \times \frac{1}{-33} \][/tex]
7. Simplifying the multiplication:
[tex]\[ \text{number2} = \frac{9 \times 1}{11 \times (-33)} = \frac{9}{-363} \][/tex]
8. Further simplification gives:
[tex]\[ \text{number2} = -\frac{9}{363} \][/tex]
9. Reducing the fraction by dividing both the numerator and the denominator by the greatest common divisor, which here is 3:
[tex]\[ \text{number2} = -\frac{9 \div 3}{363 \div 3} = -\frac{3}{121} \][/tex]
10. Converting this fraction into its decimal form, we get:
[tex]\[ \text{number2} \approx -0.024793388429752067 \][/tex]
Therefore, the second number is approximately [tex]\(-0.024793388429752067\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.