Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! To solve for the second number given that the product of two rational numbers is [tex]\(\frac{9}{11}\)[/tex] and one of the numbers is [tex]\(-33\)[/tex], follow these steps:
1. Let's denote the first number as [tex]\( \text{number1} \)[/tex] and the second number as [tex]\( \text{number2} \)[/tex].
2. According to the problem, the product of [tex]\(\text{number1}\)[/tex] and [tex]\(\text{number2}\)[/tex] is given by:
[tex]\[ \text{number1} \times \text{number2} = \frac{9}{11} \][/tex]
3. We know that:
[tex]\[ \text{number1} = -33 \][/tex]
4. Substitute [tex]\(\text{number1}\)[/tex] into the equation:
[tex]\[ -33 \times \text{number2} = \frac{9}{11} \][/tex]
5. To solve for [tex]\(\text{number2}\)[/tex], divide both sides of the equation by [tex]\(-33\)[/tex]:
[tex]\[ \text{number2} = \frac{\frac{9}{11}}{-33} \][/tex]
6. When dividing by [tex]\(-33\)[/tex], it's equivalent to multiplying by [tex]\(\frac{1}{-33}\)[/tex]:
[tex]\[ \text{number2} = \frac{9}{11} \times \frac{1}{-33} \][/tex]
7. Simplifying the multiplication:
[tex]\[ \text{number2} = \frac{9 \times 1}{11 \times (-33)} = \frac{9}{-363} \][/tex]
8. Further simplification gives:
[tex]\[ \text{number2} = -\frac{9}{363} \][/tex]
9. Reducing the fraction by dividing both the numerator and the denominator by the greatest common divisor, which here is 3:
[tex]\[ \text{number2} = -\frac{9 \div 3}{363 \div 3} = -\frac{3}{121} \][/tex]
10. Converting this fraction into its decimal form, we get:
[tex]\[ \text{number2} \approx -0.024793388429752067 \][/tex]
Therefore, the second number is approximately [tex]\(-0.024793388429752067\)[/tex].
1. Let's denote the first number as [tex]\( \text{number1} \)[/tex] and the second number as [tex]\( \text{number2} \)[/tex].
2. According to the problem, the product of [tex]\(\text{number1}\)[/tex] and [tex]\(\text{number2}\)[/tex] is given by:
[tex]\[ \text{number1} \times \text{number2} = \frac{9}{11} \][/tex]
3. We know that:
[tex]\[ \text{number1} = -33 \][/tex]
4. Substitute [tex]\(\text{number1}\)[/tex] into the equation:
[tex]\[ -33 \times \text{number2} = \frac{9}{11} \][/tex]
5. To solve for [tex]\(\text{number2}\)[/tex], divide both sides of the equation by [tex]\(-33\)[/tex]:
[tex]\[ \text{number2} = \frac{\frac{9}{11}}{-33} \][/tex]
6. When dividing by [tex]\(-33\)[/tex], it's equivalent to multiplying by [tex]\(\frac{1}{-33}\)[/tex]:
[tex]\[ \text{number2} = \frac{9}{11} \times \frac{1}{-33} \][/tex]
7. Simplifying the multiplication:
[tex]\[ \text{number2} = \frac{9 \times 1}{11 \times (-33)} = \frac{9}{-363} \][/tex]
8. Further simplification gives:
[tex]\[ \text{number2} = -\frac{9}{363} \][/tex]
9. Reducing the fraction by dividing both the numerator and the denominator by the greatest common divisor, which here is 3:
[tex]\[ \text{number2} = -\frac{9 \div 3}{363 \div 3} = -\frac{3}{121} \][/tex]
10. Converting this fraction into its decimal form, we get:
[tex]\[ \text{number2} \approx -0.024793388429752067 \][/tex]
Therefore, the second number is approximately [tex]\(-0.024793388429752067\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.