Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To prove that the sum of the series [tex]\(1 + 3 + 6 + \ldots + \frac{n(n+1)}{2} = \frac{n(n+1)(n+2)}{6}\)[/tex] for all natural numbers [tex]\(n\)[/tex], let's follow a step-by-step approach:
### Step 1: Understand the Series
The series is given as [tex]\(1 + 3 + 6 + \ldots + \frac{n(n+1)}{2}\)[/tex]. Notice that each term in the series follows the pattern:
- The [tex]\(k\)[/tex]-th term is given by [tex]\(\frac{k(k+1)}{2}\)[/tex].
### Step 2: Define the Sum
Let [tex]\(S_n\)[/tex] be the sum of the first [tex]\(n\)[/tex] terms of the series:
[tex]\[ S_n = \sum_{k=1}^n \frac{k(k+1)}{2} \][/tex]
We want to prove that:
[tex]\[ S_n = \frac{n(n+1)(n+2)}{6} \][/tex]
### Step 3: Express the Sum Using Known Summation Formulas
The series can be split and simplified using known summation formulas. We rewrite each term [tex]\(\frac{k(k+1)}{2}\)[/tex] as:
[tex]\[ \frac{k(k+1)}{2} = \frac{k^2 + k}{2} \][/tex]
Thus,
[tex]\[ S_n = \sum_{k=1}^n \frac{k^2 + k}{2} = \frac{1}{2} \left( \sum_{k=1}^n k^2 + \sum_{k=1}^n k \right) \][/tex]
### Step 4: Use Summation Formulas
We employ the summation formulas for [tex]\(\sum_{k=1}^n k\)[/tex] and [tex]\(\sum_{k=1}^n k^2\)[/tex]:
[tex]\[ \sum_{k=1}^n k = \frac{n(n+1)}{2} \][/tex]
[tex]\[ \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6} \][/tex]
### Step 5: Substitute and Simplify
Substitute these formulas back into the expression for [tex]\(S_n\)[/tex]:
[tex]\[ S_n = \frac{1}{2} \left( \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right) \][/tex]
Combine the terms inside the parentheses:
[tex]\[ S_n = \frac{1}{2} \left( \frac{n(n+1)(2n+1) + 3n(n+1)}{6} \right) \][/tex]
[tex]\[ S_n = \frac{1}{2} \left( \frac{n(n+1) (2n+1 + 3)}{6} \right) \][/tex]
[tex]\[ S_n = \frac{1}{2} \left( \frac{n(n+1)(2n+4)}{6} \right) \][/tex]
[tex]\[ S_n = \frac{1}{2} \left( \frac{n(n+1)2(n+2)}{6} \right) \][/tex]
[tex]\[ S_n = \frac{1}{2} \left( \frac{2n(n+1)(n+2)}{6} \right) \][/tex]
[tex]\[ S_n = \frac{n(n+1)(n+2)}{6} \][/tex]
### Conclusion
Thus, we have shown that:
[tex]\[ 1 + 3 + 6 + \ldots + \frac{n(n+1)}{2} = \frac{n(n+1)(n+2)}{6} \][/tex]
This completes the proof for all natural numbers [tex]\(n\)[/tex].
### Step 1: Understand the Series
The series is given as [tex]\(1 + 3 + 6 + \ldots + \frac{n(n+1)}{2}\)[/tex]. Notice that each term in the series follows the pattern:
- The [tex]\(k\)[/tex]-th term is given by [tex]\(\frac{k(k+1)}{2}\)[/tex].
### Step 2: Define the Sum
Let [tex]\(S_n\)[/tex] be the sum of the first [tex]\(n\)[/tex] terms of the series:
[tex]\[ S_n = \sum_{k=1}^n \frac{k(k+1)}{2} \][/tex]
We want to prove that:
[tex]\[ S_n = \frac{n(n+1)(n+2)}{6} \][/tex]
### Step 3: Express the Sum Using Known Summation Formulas
The series can be split and simplified using known summation formulas. We rewrite each term [tex]\(\frac{k(k+1)}{2}\)[/tex] as:
[tex]\[ \frac{k(k+1)}{2} = \frac{k^2 + k}{2} \][/tex]
Thus,
[tex]\[ S_n = \sum_{k=1}^n \frac{k^2 + k}{2} = \frac{1}{2} \left( \sum_{k=1}^n k^2 + \sum_{k=1}^n k \right) \][/tex]
### Step 4: Use Summation Formulas
We employ the summation formulas for [tex]\(\sum_{k=1}^n k\)[/tex] and [tex]\(\sum_{k=1}^n k^2\)[/tex]:
[tex]\[ \sum_{k=1}^n k = \frac{n(n+1)}{2} \][/tex]
[tex]\[ \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6} \][/tex]
### Step 5: Substitute and Simplify
Substitute these formulas back into the expression for [tex]\(S_n\)[/tex]:
[tex]\[ S_n = \frac{1}{2} \left( \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right) \][/tex]
Combine the terms inside the parentheses:
[tex]\[ S_n = \frac{1}{2} \left( \frac{n(n+1)(2n+1) + 3n(n+1)}{6} \right) \][/tex]
[tex]\[ S_n = \frac{1}{2} \left( \frac{n(n+1) (2n+1 + 3)}{6} \right) \][/tex]
[tex]\[ S_n = \frac{1}{2} \left( \frac{n(n+1)(2n+4)}{6} \right) \][/tex]
[tex]\[ S_n = \frac{1}{2} \left( \frac{n(n+1)2(n+2)}{6} \right) \][/tex]
[tex]\[ S_n = \frac{1}{2} \left( \frac{2n(n+1)(n+2)}{6} \right) \][/tex]
[tex]\[ S_n = \frac{n(n+1)(n+2)}{6} \][/tex]
### Conclusion
Thus, we have shown that:
[tex]\[ 1 + 3 + 6 + \ldots + \frac{n(n+1)}{2} = \frac{n(n+1)(n+2)}{6} \][/tex]
This completes the proof for all natural numbers [tex]\(n\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.