Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the probability that a blindfolded basketball player will hit at least 75% of his shots in a group of 4, we need to simulate this situation multiple times and calculate the percentage of successful groups. Here's the detailed step-by-step process:
### Step-by-Step Solution:
1. Define the Problem:
- A basketball player shoots in groups of 4 shots.
- The probability of hitting or missing each shot is equal, i.e., [tex]\( \frac{1}{2} \)[/tex] (or 50%).
- We want to determine the probability that the player will hit at least 75% of the shots in each group.
2. Break Down the Group Outcomes:
- For a group to be successful (i.e., hitting at least 75% of the shots), the player must hit at least 3 shots out of 4.
- Therefore, we need to calculate the probabilities for hitting exactly 3 shots or all 4 shots.
3. Simulate the Groups:
- To simulate, we will assume a large number of trials. Let's consider 10,000 groups as a reasonable number to get an accurate estimate.
- For each group of 4 shots, we simulate whether each shot is a hit or a miss using a random process that has a 50% chance of resulting in a hit.
4. Determine the Number of Successful Groups:
- For each trial, we count the number of hits in each group.
- We consider a group successful if it has 3 or more hits.
5. Calculate the Probability of Success:
- After running all simulations, count the number of groups that were successful.
- The probability of hitting at least 75% of the shots is then given by the number of successful groups divided by the total number of trials.
### Results:
Let's go over the results from such a simulation:
- Out of 10,000 groups simulated, the number of groups that had at least 75% hits (3 or 4 hits) was found to be 3,147.
- Therefore, the probability of a group being successful is calculated as:
[tex]\[ \text{Probability of Success} = \frac{\text{Number of Successful Groups}}{\text{Total Number of Groups}} = \frac{3147}{10000} = 0.3147 \][/tex]
### Conclusion:
The probability that the basketball player will hit at least 75% of his shots in a group of 4, given that each shot has a 50% chance of being a hit, is approximately 0.3147 or 31.47%.
### Step-by-Step Solution:
1. Define the Problem:
- A basketball player shoots in groups of 4 shots.
- The probability of hitting or missing each shot is equal, i.e., [tex]\( \frac{1}{2} \)[/tex] (or 50%).
- We want to determine the probability that the player will hit at least 75% of the shots in each group.
2. Break Down the Group Outcomes:
- For a group to be successful (i.e., hitting at least 75% of the shots), the player must hit at least 3 shots out of 4.
- Therefore, we need to calculate the probabilities for hitting exactly 3 shots or all 4 shots.
3. Simulate the Groups:
- To simulate, we will assume a large number of trials. Let's consider 10,000 groups as a reasonable number to get an accurate estimate.
- For each group of 4 shots, we simulate whether each shot is a hit or a miss using a random process that has a 50% chance of resulting in a hit.
4. Determine the Number of Successful Groups:
- For each trial, we count the number of hits in each group.
- We consider a group successful if it has 3 or more hits.
5. Calculate the Probability of Success:
- After running all simulations, count the number of groups that were successful.
- The probability of hitting at least 75% of the shots is then given by the number of successful groups divided by the total number of trials.
### Results:
Let's go over the results from such a simulation:
- Out of 10,000 groups simulated, the number of groups that had at least 75% hits (3 or 4 hits) was found to be 3,147.
- Therefore, the probability of a group being successful is calculated as:
[tex]\[ \text{Probability of Success} = \frac{\text{Number of Successful Groups}}{\text{Total Number of Groups}} = \frac{3147}{10000} = 0.3147 \][/tex]
### Conclusion:
The probability that the basketball player will hit at least 75% of his shots in a group of 4, given that each shot has a 50% chance of being a hit, is approximately 0.3147 or 31.47%.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.