Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To work out the gradient of each line, let's follow a step-by-step process for each equation.
### Finding the Gradient of the Line [tex]\( y = 5x - 3 \)[/tex]
1. Identify the form of the equation:
- The given equation is [tex]\( y = 5x - 3 \)[/tex].
- This is in the slope-intercept form, [tex]\( y = mx + c \)[/tex], where [tex]\( m \)[/tex] is the gradient.
2. Determine the gradient:
- By comparing [tex]\( y = 5x - 3 \)[/tex] to [tex]\( y = mx + c \)[/tex], we see that [tex]\( m = 5 \)[/tex].
Therefore, the gradient of the line [tex]\( y = 5x - 3 \)[/tex] is [tex]\( 5 \)[/tex].
### Finding the Gradient of the Line [tex]\( 3y - 12x + 7 = 0 \)[/tex]
1. Rearrange the equation into the slope-intercept form:
- Start with [tex]\( 3y - 12x + 7 = 0 \)[/tex].
- Add [tex]\( 12x \)[/tex] to both sides: [tex]\( 3y = 12x - 7 \)[/tex].
- Divide by 3: [tex]\( y = 4x - \frac{7}{3} \)[/tex].
2. Identify the gradient:
- The equation is now in the form [tex]\( y = mx + c \)[/tex], where [tex]\( m \)[/tex] is the gradient.
- Here, [tex]\( m = 4 \)[/tex].
Therefore, the gradient of the line [tex]\( 3y - 12x + 7 = 0 \)[/tex] is [tex]\( 4 \)[/tex].
Summarizing the gradients:
- The gradient of the line [tex]\( y = 5x - 3 \)[/tex] is [tex]\( 5 \)[/tex].
- The gradient of the line [tex]\( 3y - 12x + 7 = 0 \)[/tex] is [tex]\( 4 \)[/tex].
### Finding the Gradient of the Line [tex]\( y = 5x - 3 \)[/tex]
1. Identify the form of the equation:
- The given equation is [tex]\( y = 5x - 3 \)[/tex].
- This is in the slope-intercept form, [tex]\( y = mx + c \)[/tex], where [tex]\( m \)[/tex] is the gradient.
2. Determine the gradient:
- By comparing [tex]\( y = 5x - 3 \)[/tex] to [tex]\( y = mx + c \)[/tex], we see that [tex]\( m = 5 \)[/tex].
Therefore, the gradient of the line [tex]\( y = 5x - 3 \)[/tex] is [tex]\( 5 \)[/tex].
### Finding the Gradient of the Line [tex]\( 3y - 12x + 7 = 0 \)[/tex]
1. Rearrange the equation into the slope-intercept form:
- Start with [tex]\( 3y - 12x + 7 = 0 \)[/tex].
- Add [tex]\( 12x \)[/tex] to both sides: [tex]\( 3y = 12x - 7 \)[/tex].
- Divide by 3: [tex]\( y = 4x - \frac{7}{3} \)[/tex].
2. Identify the gradient:
- The equation is now in the form [tex]\( y = mx + c \)[/tex], where [tex]\( m \)[/tex] is the gradient.
- Here, [tex]\( m = 4 \)[/tex].
Therefore, the gradient of the line [tex]\( 3y - 12x + 7 = 0 \)[/tex] is [tex]\( 4 \)[/tex].
Summarizing the gradients:
- The gradient of the line [tex]\( y = 5x - 3 \)[/tex] is [tex]\( 5 \)[/tex].
- The gradient of the line [tex]\( 3y - 12x + 7 = 0 \)[/tex] is [tex]\( 4 \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.