Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the probability of choosing a ball numbered 25 in a lottery game where the balls are numbered from 1 through 24, follow these steps:
1. Understand the problem:
- There are 24 balls, each numbered from 1 to 24.
- You want to find the probability of selecting a ball numbered 25.
2. Identify the range of numbers:
- The balls are numbered 1, 2, 3, ..., 24.
- There is no ball numbered 25 in this range.
3. Probability definition:
- Probability is defined as the number of successful outcomes divided by the total number of possible outcomes.
- A successful outcome means drawing a ball numbered 25.
4. Count the number of successful outcomes:
- Since there is no ball numbered 25 in the lottery (numbered 1 through 24), the number of successful outcomes is 0.
5. Count the total number of possible outcomes:
- The total number of possible outcomes is 24, as there are 24 balls in the lottery.
6. Calculate the probability:
- The probability [tex]\( P \)[/tex] is given by the formula:
[tex]\[ P = \frac{\text{Number of successful outcomes}}{\text{Total number of possible outcomes}} \][/tex]
- Substituting the values, we get:
[tex]\[ P = \frac{0}{24} = 0 \][/tex]
Given these steps, the probability of choosing a ball numbered 25 is [tex]\( 0 \)[/tex].
Therefore, the best answer from the choices provided is:
a. 0
1. Understand the problem:
- There are 24 balls, each numbered from 1 to 24.
- You want to find the probability of selecting a ball numbered 25.
2. Identify the range of numbers:
- The balls are numbered 1, 2, 3, ..., 24.
- There is no ball numbered 25 in this range.
3. Probability definition:
- Probability is defined as the number of successful outcomes divided by the total number of possible outcomes.
- A successful outcome means drawing a ball numbered 25.
4. Count the number of successful outcomes:
- Since there is no ball numbered 25 in the lottery (numbered 1 through 24), the number of successful outcomes is 0.
5. Count the total number of possible outcomes:
- The total number of possible outcomes is 24, as there are 24 balls in the lottery.
6. Calculate the probability:
- The probability [tex]\( P \)[/tex] is given by the formula:
[tex]\[ P = \frac{\text{Number of successful outcomes}}{\text{Total number of possible outcomes}} \][/tex]
- Substituting the values, we get:
[tex]\[ P = \frac{0}{24} = 0 \][/tex]
Given these steps, the probability of choosing a ball numbered 25 is [tex]\( 0 \)[/tex].
Therefore, the best answer from the choices provided is:
a. 0
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.