Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Which of the following shows the division problem below in synthetic division form?
[tex]\[ \frac{6 x^2-x+5}{x+7} \][/tex]

A. [tex]\[ 7 \longdiv { 6 - 1 \quad 5 } \][/tex]

B. [tex]\[ -7 \longdiv { 6 \quad 1 \quad 5 } \][/tex]

C. [tex]\[ 7 \longdiv { 6 \quad 1 \quad 5 } \][/tex]

D. [tex]\[ -7 \longdiv { 6 - 1 \quad 5 } \][/tex]


Sagot :

To express the given division problem [tex]\( \frac{6x^2 - x + 5}{x + 7} \)[/tex] using synthetic division, follow these steps:

1. Identify the coefficients of the polynomial: For the polynomial [tex]\( 6x^2 - x + 5 \)[/tex], the coefficients are [tex]\( 6 \)[/tex], [tex]\( -1 \)[/tex], and [tex]\( 5 \)[/tex].

2. Set up the synthetic division:
- In synthetic division, we need to use the opposite sign of the constant term from the divisor. Here, the divisor is [tex]\( x + 7 \)[/tex], so the constant term is [tex]\( 7 \)[/tex]. Therefore, we will use [tex]\( -7 \)[/tex].

3. Place the coefficients in a row:
- Write the coefficients of the polynomial [tex]\( 6 \)[/tex], [tex]\( -1 \)[/tex], and [tex]\( 5 \)[/tex] in a row.

4. Combine the opposite of the divisor's constant with the row of coefficients:
- The setup should look like this:

[tex]\[ -7 \longdiv { 6 \quad -1 \quad 5 } \][/tex]

Thus, the correct synthetic division form is:
[tex]\[ -7 \longdiv { 6 \quad -1 \quad 5 } \][/tex]

Therefore, the correct choice is:
[tex]\[ \text{D. } - 7 \longdiv { 6 - 1 \quad 5 } \][/tex]