Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To express the given division problem [tex]\( \frac{6x^2 - x + 5}{x + 7} \)[/tex] using synthetic division, follow these steps:
1. Identify the coefficients of the polynomial: For the polynomial [tex]\( 6x^2 - x + 5 \)[/tex], the coefficients are [tex]\( 6 \)[/tex], [tex]\( -1 \)[/tex], and [tex]\( 5 \)[/tex].
2. Set up the synthetic division:
- In synthetic division, we need to use the opposite sign of the constant term from the divisor. Here, the divisor is [tex]\( x + 7 \)[/tex], so the constant term is [tex]\( 7 \)[/tex]. Therefore, we will use [tex]\( -7 \)[/tex].
3. Place the coefficients in a row:
- Write the coefficients of the polynomial [tex]\( 6 \)[/tex], [tex]\( -1 \)[/tex], and [tex]\( 5 \)[/tex] in a row.
4. Combine the opposite of the divisor's constant with the row of coefficients:
- The setup should look like this:
[tex]\[ -7 \longdiv { 6 \quad -1 \quad 5 } \][/tex]
Thus, the correct synthetic division form is:
[tex]\[ -7 \longdiv { 6 \quad -1 \quad 5 } \][/tex]
Therefore, the correct choice is:
[tex]\[ \text{D. } - 7 \longdiv { 6 - 1 \quad 5 } \][/tex]
1. Identify the coefficients of the polynomial: For the polynomial [tex]\( 6x^2 - x + 5 \)[/tex], the coefficients are [tex]\( 6 \)[/tex], [tex]\( -1 \)[/tex], and [tex]\( 5 \)[/tex].
2. Set up the synthetic division:
- In synthetic division, we need to use the opposite sign of the constant term from the divisor. Here, the divisor is [tex]\( x + 7 \)[/tex], so the constant term is [tex]\( 7 \)[/tex]. Therefore, we will use [tex]\( -7 \)[/tex].
3. Place the coefficients in a row:
- Write the coefficients of the polynomial [tex]\( 6 \)[/tex], [tex]\( -1 \)[/tex], and [tex]\( 5 \)[/tex] in a row.
4. Combine the opposite of the divisor's constant with the row of coefficients:
- The setup should look like this:
[tex]\[ -7 \longdiv { 6 \quad -1 \quad 5 } \][/tex]
Thus, the correct synthetic division form is:
[tex]\[ -7 \longdiv { 6 \quad -1 \quad 5 } \][/tex]
Therefore, the correct choice is:
[tex]\[ \text{D. } - 7 \longdiv { 6 - 1 \quad 5 } \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.