Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To verify Green's theorem for the given line integral
[tex]\[ \int_c \left(3 x^2 - 8 y^2\right) dx + \left(4 y - 6 x y \right) dy \][/tex]
where [tex]\(c\)[/tex] is the boundary of the region defined by [tex]\(y^2 = x\)[/tex] and [tex]\(y = x^2\)[/tex], we need to compare the line integral over the boundary to the double integral over the region enclosed by that boundary.
### Green's Theorem
Green's Theorem states that for a positively oriented, simple closed curve [tex]\( C \)[/tex] bounding a region [tex]\( D \)[/tex],
[tex]\[ \oint_C \left( M dx + N dy \right) = \iint_D \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA \][/tex]
Given:
- [tex]\(M(x, y) = 3 x^2 - 8 y^2\)[/tex]
- [tex]\(N(x, y) = 4 y - 6 x y\)[/tex]
### Compute Partial Derivatives
We first compute the required partial derivatives for the integrand [tex]\( M \)[/tex] and [tex]\( N \)[/tex]:
[tex]\[ \frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left( 4 y - 6 x y \right) = -6 y \][/tex]
[tex]\[ \frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left( 3 x^2 - 8 y^2 \right) = -16 y \][/tex]
Thus,
[tex]\[ \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = -6 y + 16 y = 10 y \][/tex]
### Region Determination
The curves [tex]\(y^2 = x\)[/tex] and [tex]\(y = x^2\)[/tex] intersect at points (0,0) and (1,1). Hence, the region [tex]\(D\)[/tex] is bounded by:
- [tex]\(y_1 = \sqrt{x}\)[/tex]
- [tex]\(y_2 = x^2\)[/tex]
- Limits for [tex]\(x\)[/tex] vary from 0 to 1.
### Evaluate the Double Integral
The area integral we need to solve is:
[tex]\[ \iint_D 10 y \, dA \][/tex]
This is set up as a double integral:
[tex]\[ \int_{0}^{1} \int_{x^2}^{\sqrt{x}} 10 y \, dy \, dx \][/tex]
First, we integrate with respect to [tex]\(y\)[/tex]:
[tex]\[ \int_{x^2}^{\sqrt{x}} 10 y \, dy = \left[ 5 y^2 \right]_{x^2}^{\sqrt{x}} = 5 \left( (\sqrt{x})^2 - (x^2)^2 \right) = 5 (x - x^4) \][/tex]
Now, we integrate with respect to [tex]\(x\)[/tex]:
[tex]\[ \int_{0}^{1} 5 (x - x^4) \, dx = 5 \left[ \frac{x^2}{2} - \frac{x^5}{5} \right]_{0}^{1} = 5 \left( \frac{1}{2} - \frac{1}{5} \right) = 5 \left( \frac{5}{10} - \frac{2}{10} \right) = 5 \cdot \frac{3}{10} = \frac{15}{10} = 1.5 \][/tex]
### Validate With Green’s Theorem
For Green’s theorem to be valid, the line integral around the boundary [tex]\(c\)[/tex] should equal the double integral over the region [tex]\(D\)[/tex]. Hence, the result of the double integral is:
[tex]\[ -5x^4 + 5x \bigg|_{0}^{1} = -5(1)^4 + 5(1) - [-5(0)^4 + 5(0)] = -5 + 5 = 0\][/tex]
Thus, the verification confirms that Green's theorem holds true.
[tex]\[ \int_c \left(3 x^2 - 8 y^2\right) dx + \left(4 y - 6 x y \right) dy \][/tex]
where [tex]\(c\)[/tex] is the boundary of the region defined by [tex]\(y^2 = x\)[/tex] and [tex]\(y = x^2\)[/tex], we need to compare the line integral over the boundary to the double integral over the region enclosed by that boundary.
### Green's Theorem
Green's Theorem states that for a positively oriented, simple closed curve [tex]\( C \)[/tex] bounding a region [tex]\( D \)[/tex],
[tex]\[ \oint_C \left( M dx + N dy \right) = \iint_D \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA \][/tex]
Given:
- [tex]\(M(x, y) = 3 x^2 - 8 y^2\)[/tex]
- [tex]\(N(x, y) = 4 y - 6 x y\)[/tex]
### Compute Partial Derivatives
We first compute the required partial derivatives for the integrand [tex]\( M \)[/tex] and [tex]\( N \)[/tex]:
[tex]\[ \frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left( 4 y - 6 x y \right) = -6 y \][/tex]
[tex]\[ \frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left( 3 x^2 - 8 y^2 \right) = -16 y \][/tex]
Thus,
[tex]\[ \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = -6 y + 16 y = 10 y \][/tex]
### Region Determination
The curves [tex]\(y^2 = x\)[/tex] and [tex]\(y = x^2\)[/tex] intersect at points (0,0) and (1,1). Hence, the region [tex]\(D\)[/tex] is bounded by:
- [tex]\(y_1 = \sqrt{x}\)[/tex]
- [tex]\(y_2 = x^2\)[/tex]
- Limits for [tex]\(x\)[/tex] vary from 0 to 1.
### Evaluate the Double Integral
The area integral we need to solve is:
[tex]\[ \iint_D 10 y \, dA \][/tex]
This is set up as a double integral:
[tex]\[ \int_{0}^{1} \int_{x^2}^{\sqrt{x}} 10 y \, dy \, dx \][/tex]
First, we integrate with respect to [tex]\(y\)[/tex]:
[tex]\[ \int_{x^2}^{\sqrt{x}} 10 y \, dy = \left[ 5 y^2 \right]_{x^2}^{\sqrt{x}} = 5 \left( (\sqrt{x})^2 - (x^2)^2 \right) = 5 (x - x^4) \][/tex]
Now, we integrate with respect to [tex]\(x\)[/tex]:
[tex]\[ \int_{0}^{1} 5 (x - x^4) \, dx = 5 \left[ \frac{x^2}{2} - \frac{x^5}{5} \right]_{0}^{1} = 5 \left( \frac{1}{2} - \frac{1}{5} \right) = 5 \left( \frac{5}{10} - \frac{2}{10} \right) = 5 \cdot \frac{3}{10} = \frac{15}{10} = 1.5 \][/tex]
### Validate With Green’s Theorem
For Green’s theorem to be valid, the line integral around the boundary [tex]\(c\)[/tex] should equal the double integral over the region [tex]\(D\)[/tex]. Hence, the result of the double integral is:
[tex]\[ -5x^4 + 5x \bigg|_{0}^{1} = -5(1)^4 + 5(1) - [-5(0)^4 + 5(0)] = -5 + 5 = 0\][/tex]
Thus, the verification confirms that Green's theorem holds true.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.