Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Newton's second law of motion can be expressed in terms of momentum. To understand this, let's recall that momentum ([tex]\( p \)[/tex]) is defined as the product of mass ([tex]\( m \)[/tex]) and velocity ([tex]\( v \)[/tex]):
[tex]\[ p = mv \][/tex]
Newton's second law states that the sum of all external forces ([tex]\( \sum F \)[/tex]) acting on a body is equal to the mass ([tex]\( m \)[/tex]) of the body times its acceleration ([tex]\( a \)[/tex]):
[tex]\[ \sum F = ma \][/tex]
Acceleration ([tex]\( a \)[/tex]) can be expressed as the rate of change of velocity over time ([tex]\( t \)[/tex]):
[tex]\[ a = \frac{dv}{dt} \][/tex]
Substituting this expression for acceleration in Newton's second law gives:
[tex]\[ \sum F = m \frac{dv}{dt} \][/tex]
Rewriting this, we get:
[tex]\[ \sum F = \frac{d(mv)}{dt} \][/tex]
Since [tex]\( mv \)[/tex] is momentum ([tex]\( p \)[/tex]), the equation becomes:
[tex]\[ \sum F = \frac{dp}{dt} \][/tex]
This means that the sum of all external forces ([tex]\( \sum F \)[/tex]) acting on an object is equal to the rate of change of the object's momentum ([tex]\( \frac{dp}{dt} \)[/tex]).
Hence, the correct description of Newton's second law in terms of change in momentum is:
The sum of all external forces acting on the object is equal to the rate of change in the momentum of the object.
[tex]\[ p = mv \][/tex]
Newton's second law states that the sum of all external forces ([tex]\( \sum F \)[/tex]) acting on a body is equal to the mass ([tex]\( m \)[/tex]) of the body times its acceleration ([tex]\( a \)[/tex]):
[tex]\[ \sum F = ma \][/tex]
Acceleration ([tex]\( a \)[/tex]) can be expressed as the rate of change of velocity over time ([tex]\( t \)[/tex]):
[tex]\[ a = \frac{dv}{dt} \][/tex]
Substituting this expression for acceleration in Newton's second law gives:
[tex]\[ \sum F = m \frac{dv}{dt} \][/tex]
Rewriting this, we get:
[tex]\[ \sum F = \frac{d(mv)}{dt} \][/tex]
Since [tex]\( mv \)[/tex] is momentum ([tex]\( p \)[/tex]), the equation becomes:
[tex]\[ \sum F = \frac{dp}{dt} \][/tex]
This means that the sum of all external forces ([tex]\( \sum F \)[/tex]) acting on an object is equal to the rate of change of the object's momentum ([tex]\( \frac{dp}{dt} \)[/tex]).
Hence, the correct description of Newton's second law in terms of change in momentum is:
The sum of all external forces acting on the object is equal to the rate of change in the momentum of the object.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.