At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the set of transformations needed to graph [tex]\( f(x) = -2 \sin(x) + 3 \)[/tex] from the parent sine function, we should analyze each component of the function and how it changes the graph of [tex]\( \sin(x) \)[/tex].
1. Reflection Across the [tex]\( x \)[/tex]-axis:
- The negative sign in front of the coefficient of the sine function, [tex]\( -2 \)[/tex], indicates a reflection across the [tex]\( x \)[/tex]-axis. This transformation flips the graph upside down.
2. Vertical Stretching by a Factor of 2:
- The coefficient 2 in front of [tex]\(\sin(x)\)[/tex] indicates a vertical stretch by a factor of 2. This means that the amplitude of the sine function is multiplied by 2, making the peaks and troughs twice as far from the [tex]\( x \)[/tex]-axis as they are in the parent function.
3. Vertical Translation 3 Units Up:
- The +3 at the end of the function denotes a vertical translation upward by 3 units. This moves the entire graph upward by 3 units on the [tex]\( y \)[/tex]-axis.
Combining these transformations together, we have:
1. A reflection across the [tex]\( x \)[/tex]-axis.
2. A vertical stretching by a factor of 2.
3. A vertical translation upward by 3 units.
Therefore, the correct set of transformations is:
- Reflection across the [tex]\( x \)[/tex]-axis,
- Vertical stretching by a factor of 2,
- Vertical translation 3 units up.
Thus, the correct choice is:
Reflection across the [tex]\( x \)[/tex]-axis, vertical stretching by a factor of 2, vertical translation 3 units up.
1. Reflection Across the [tex]\( x \)[/tex]-axis:
- The negative sign in front of the coefficient of the sine function, [tex]\( -2 \)[/tex], indicates a reflection across the [tex]\( x \)[/tex]-axis. This transformation flips the graph upside down.
2. Vertical Stretching by a Factor of 2:
- The coefficient 2 in front of [tex]\(\sin(x)\)[/tex] indicates a vertical stretch by a factor of 2. This means that the amplitude of the sine function is multiplied by 2, making the peaks and troughs twice as far from the [tex]\( x \)[/tex]-axis as they are in the parent function.
3. Vertical Translation 3 Units Up:
- The +3 at the end of the function denotes a vertical translation upward by 3 units. This moves the entire graph upward by 3 units on the [tex]\( y \)[/tex]-axis.
Combining these transformations together, we have:
1. A reflection across the [tex]\( x \)[/tex]-axis.
2. A vertical stretching by a factor of 2.
3. A vertical translation upward by 3 units.
Therefore, the correct set of transformations is:
- Reflection across the [tex]\( x \)[/tex]-axis,
- Vertical stretching by a factor of 2,
- Vertical translation 3 units up.
Thus, the correct choice is:
Reflection across the [tex]\( x \)[/tex]-axis, vertical stretching by a factor of 2, vertical translation 3 units up.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.