Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's look at how we can approach the given expression step-by-step.
Step 1: Write down the given expression
The given expression is:
[tex]\[ x^2 - 9 \][/tex]
Step 2: Recognize the form of the expression
Notice that the expression [tex]\( x^2 - 9 \)[/tex] is a difference of squares. The difference of squares formula is given by:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
In this case, [tex]\( a = x \)[/tex] and [tex]\( b = 3 \)[/tex]. So we can rewrite [tex]\( x^2 - 9 \)[/tex] as:
[tex]\[ x^2 - 9 = x^2 - 3^2 \][/tex]
Step 3: Apply the difference of squares formula
Substitute [tex]\( a = x \)[/tex] and [tex]\( b = 3 \)[/tex] into the difference of squares formula:
[tex]\[ x^2 - 3^2 = (x - 3)(x + 3) \][/tex]
Step 4: Write the final simplified expression
Thus, the simplified form of the expression [tex]\( x^2 - 9 \)[/tex] is:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
This is the factorized form of the given polynomial.
Step 1: Write down the given expression
The given expression is:
[tex]\[ x^2 - 9 \][/tex]
Step 2: Recognize the form of the expression
Notice that the expression [tex]\( x^2 - 9 \)[/tex] is a difference of squares. The difference of squares formula is given by:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
In this case, [tex]\( a = x \)[/tex] and [tex]\( b = 3 \)[/tex]. So we can rewrite [tex]\( x^2 - 9 \)[/tex] as:
[tex]\[ x^2 - 9 = x^2 - 3^2 \][/tex]
Step 3: Apply the difference of squares formula
Substitute [tex]\( a = x \)[/tex] and [tex]\( b = 3 \)[/tex] into the difference of squares formula:
[tex]\[ x^2 - 3^2 = (x - 3)(x + 3) \][/tex]
Step 4: Write the final simplified expression
Thus, the simplified form of the expression [tex]\( x^2 - 9 \)[/tex] is:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
This is the factorized form of the given polynomial.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.