Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's analyze the data step-by-step and draw the necessary conclusions.
1. Given a person who has eaten snack A before, the probability that they prefer snack B:
- The number of people who have eaten snack A before and prefer snack B is [tex]\( 92 \)[/tex].
- The total number of people who have eaten snack A before is [tex]\( 236 \)[/tex].
- The probability is calculated as:
[tex]\[ \text{Probability} = \frac{92}{236} \approx 0.38983 \][/tex]
- Converting this probability to a percentage:
[tex]\[ 0.38983 \times 100 \approx 38.98\% \][/tex]
- Thus, "Given a person who has eaten snack A before, the customer will change to snack B 38.98% of the time.
2. Given a person who has not eaten snack A before, the probability that they prefer snack A:
- The number of people who have not eaten snack A before and prefer snack A is [tex]\( 108 \)[/tex].
- The total number of people who have not eaten snack A before is [tex]\( 336 \)[/tex].
- The probability is calculated as:
[tex]\[ \text{Probability} = \frac{108}{336} \approx 0.32143 \][/tex]
- Converting this probability to a percentage:
[tex]\[ 0.32143 \times 100 \approx 32.14\% \][/tex]
- Thus, "Given a person who has not eaten snack A before, the customer will want to eat snack A" 32.14% of the time.
Based on the above calculations, we complete the conclusions as follows:
Complete the conclusions based on the data in the table.
1. Given a person who has eaten snack A before, the customer will change to snack B 38.98%.
2. Given a person who has not eaten snack A before, the customer will want to eat snack A.
1. Given a person who has eaten snack A before, the probability that they prefer snack B:
- The number of people who have eaten snack A before and prefer snack B is [tex]\( 92 \)[/tex].
- The total number of people who have eaten snack A before is [tex]\( 236 \)[/tex].
- The probability is calculated as:
[tex]\[ \text{Probability} = \frac{92}{236} \approx 0.38983 \][/tex]
- Converting this probability to a percentage:
[tex]\[ 0.38983 \times 100 \approx 38.98\% \][/tex]
- Thus, "Given a person who has eaten snack A before, the customer will change to snack B 38.98% of the time.
2. Given a person who has not eaten snack A before, the probability that they prefer snack A:
- The number of people who have not eaten snack A before and prefer snack A is [tex]\( 108 \)[/tex].
- The total number of people who have not eaten snack A before is [tex]\( 336 \)[/tex].
- The probability is calculated as:
[tex]\[ \text{Probability} = \frac{108}{336} \approx 0.32143 \][/tex]
- Converting this probability to a percentage:
[tex]\[ 0.32143 \times 100 \approx 32.14\% \][/tex]
- Thus, "Given a person who has not eaten snack A before, the customer will want to eat snack A" 32.14% of the time.
Based on the above calculations, we complete the conclusions as follows:
Complete the conclusions based on the data in the table.
1. Given a person who has eaten snack A before, the customer will change to snack B 38.98%.
2. Given a person who has not eaten snack A before, the customer will want to eat snack A.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.