At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Convert the following angle to sexagesimal degrees:
[tex]$
E=\frac{\frac{2 \pi}{5} \text{ rad} + 60^\circ}{9}
$[/tex]


Sagot :

Let's solve the given problem step-by-step to find [tex]\( E \)[/tex]. The expression to evaluate is:

[tex]\[ E = \frac{\frac{2 \pi}{5} \text{ rad} + 60^8 \text{ minutes}}{9} \][/tex]

We need to convert the terms in the numerator, [tex]\(\frac{2 \pi}{5}\)[/tex] radians and [tex]\(60^8\)[/tex] minutes, before summing them and then dividing by 9.

1. Convert [tex]\(\frac{2 \pi}{5}\)[/tex] radians into degrees:

Since there are [tex]\( \pi \)[/tex] radians in 180 degrees,

[tex]\[ \frac{2 \pi}{5} \text{ radians} = \frac{2 \times 180^\circ}{5} = 72^\circ \][/tex]

This results in approximately [tex]\( 1.2566370614359172 \)[/tex] when computed.

2. Convert [tex]\(60^8\)[/tex] to degrees:

To convert minutes to degrees, we note that 1 degree is equal to 60 minutes. Thus,

[tex]\[ 60^8 \text{ minutes} = \frac{60}{8} \text{ degrees} \][/tex]

When computed, this gives us:

[tex]\[ \frac{60}{8} = 7.5^\circ \][/tex]

3. Sum the converted values:

Summing the two values from steps 1 and 2, we obtain:

[tex]\[ 1.2566370614359172 + 7.5 = 8.7566370614359172 \][/tex]

4. Divide by 9:

Finally, we divide the result by 9:

[tex]\[ E = \frac{8.7566370614359172}{9} \approx 0.9729596734928797 \][/tex]

Thus, the value of [tex]\( E \)[/tex] is approximately [tex]\( 0.9729596734928797 \)[/tex].