Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

[tex][tex]$f(x)$[/tex][/tex] and [tex][tex]$g(x)$[/tex][/tex] are continuous functions. The table below lists the values of [tex][tex]$f(x)$[/tex][/tex], [tex][tex]$g(x)$[/tex][/tex], and their derivatives for certain values of [tex][tex]$x$[/tex][/tex].

\begin{tabular}{|c|c|c|c|}
\hline
[tex][tex]$x$[/tex][/tex] & [tex][tex]$f(x)$[/tex][/tex] & [tex][tex]$g(x)$[/tex][/tex] & [tex][tex]$f^{\prime}(x)$[/tex][/tex] & [tex][tex]$g^{\prime}(x)$[/tex][/tex] \\
\hline
-4 & -9 & 8 & 6 & -2 \\
\hline
-1 & -4 & 6 & 3 & 1 \\
\hline
3 & 1 & -3 & 2 & 4 \\
\hline
1 & -8 & 6 & 6 & -2 \\
\hline
6 & 3 & 7 & -1 & -8 \\
\hline
\end{tabular}

Use the values in the table to find [tex][tex]$h^{\prime}(-1)$[/tex][/tex], where
[tex]\[
h(x) = \frac{3}{[g(x)]^4}
\][/tex]
(round decimal answer to 3 decimal places if needed)


Sagot :

To find [tex]\(h'(-1)\)[/tex] where [tex]\(h(x) = \frac{3}{[g(x)]^4}\)[/tex], let's follow these steps:

1. Express [tex]\(h(x)\)[/tex] explicitly:
[tex]\[ h(x) = 3 [g(x)]^{-4} \][/tex]

2. Compute the derivative [tex]\(h'(x)\)[/tex] using the chain rule:
[tex]\[ h(x) = 3 [g(x)]^{-4} \][/tex]
Let [tex]\(u = g(x)\)[/tex]. Then [tex]\(h(x) = 3 u^{-4}\)[/tex].

Compute the derivative [tex]\(\frac{d}{dx}[3 u^{-4}]\)[/tex]:
[tex]\[ \frac{d}{dx}[3 u^{-4}] = 3 \cdot (-4) u^{-5} \frac{du}{dx} \][/tex]
[tex]\[ \frac{d}{dx}[3 u^{-4}] = -12 u^{-5} \frac{du}{dx} \][/tex]

3. Substitute back [tex]\(u = g(x)\)[/tex] and the chain rule result:
[tex]\[ h'(x) = -12 [g(x)]^{-5} g'(x) \][/tex]

4. Evaluate [tex]\(h'(-1)\)[/tex] using the given values from the table:
From the table:
[tex]\[ g(-1) = 6 \][/tex]
[tex]\[ g'(-1) = 1 \][/tex]

Substitute [tex]\(g(-1)\)[/tex] and [tex]\(g'(-1)\)[/tex] into the derivative formula:
[tex]\[ h'(-1) = -12 [g(-1)]^{-5} g'(-1) \][/tex]

5. Calculate [tex]\(h'(-1)\)[/tex]:
[tex]\[ h'(-1) = -12 [6]^{-5} \cdot 1 \][/tex]
[tex]\[ h'(-1) = -12 \cdot 6^{-5} \cdot 1 \][/tex]

6. Simplify [tex]\(6^{-5}\)[/tex]:
[tex]\[ 6^{-5} = \frac{1}{6^5} = \frac{1}{7776} \][/tex]
[tex]\[ h'(-1) = -12 \cdot \frac{1}{7776} \][/tex]
[tex]\[ h'(-1) = -\frac{12}{7776} = -\frac{1}{648} \approx -0.001543 \][/tex]

7. Round the answer to 3 decimal places:
[tex]\[ h'(-1) \approx -0.002 \][/tex]

So, the value of [tex]\(h'(-1)\)[/tex] is [tex]\(-0.002\)[/tex].