Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which system of linear equations has the point [tex]\((-3, -3)\)[/tex] as its solution, we need to substitute [tex]\((x, y) = (-3, -3)\)[/tex] into each pair of equations. We will then verify if both equations in any system are satisfied by this point.
Let's analyze each system one by one:
### System 1:
[tex]\[ x - 5y = -12 \][/tex]
[tex]\[ 3x + 2y = -15 \][/tex]
Substitute [tex]\((x, y) = (-3, -3)\)[/tex]:
1. For the first equation:
[tex]\[ -3 - 5(-3) = -3 + 15 = 12 \neq -12 \][/tex]
The point [tex]\((-3, -3)\)[/tex] does not satisfy the first equation. Therefore, this system cannot be the answer.
### System 2:
[tex]\[ x - 5y = -12 \][/tex]
[tex]\[ 3x + 2y = 15 \][/tex]
Substitute [tex]\((x, y) = (-3, -3)\)[/tex]:
1. For the first equation:
[tex]\[ -3 - 5(-3) = -3 + 15 = 12 \neq -12 \][/tex]
The point [tex]\((-3, -3)\)[/tex] does not satisfy the first equation. Therefore, this system cannot be the answer.
### System 3:
[tex]\[ x - 5y = 12 \][/tex]
[tex]\[ 3x + 2y = -15 \][/tex]
Substitute [tex]\((x, y) = (-3, -3)\)[/tex]:
1. For the first equation:
[tex]\[ -3 - 5(-3) = -3 + 15 = 12 \][/tex]
The point [tex]\((-3, -3)\)[/tex] satisfies the first equation.
2. For the second equation:
[tex]\[ 3(-3) + 2(-3) = -9 - 6 = -15 \][/tex]
The point [tex]\((-3, -3)\)[/tex] satisfies the second equation.
Since the point [tex]\((-3, -3)\)[/tex] satisfies both equations, this system could be the correct one.
### System 4:
[tex]\[ x - 5y = 12 \][/tex]
[tex]\[ 3x + 2y = 15 \][/tex]
Substitute [tex]\((x, y) = (-3, -3)\)[/tex]:
1. For the first equation:
[tex]\[ -3 - 5(-3) = -3 + 15 = 12 \][/tex]
The point [tex]\((-3, -3)\)[/tex] satisfies the first equation.
2. For the second equation:
[tex]\[ 3(-3) + 2(-3) = -9 - 6 = -15 \neq 15 \][/tex]
The point [tex]\((-3, -3)\)[/tex] does not satisfy the second equation. Therefore, this system cannot be the answer.
After substituting the point [tex]\((-3, -3)\)[/tex] into each system of equations, we find that the only system that satisfies both equations is:
[tex]\[ \boxed{ x - 5y = 12 \text{ and } 3x + 2y = -15 } \][/tex]
This corresponds to the third system of linear equations.
Let's analyze each system one by one:
### System 1:
[tex]\[ x - 5y = -12 \][/tex]
[tex]\[ 3x + 2y = -15 \][/tex]
Substitute [tex]\((x, y) = (-3, -3)\)[/tex]:
1. For the first equation:
[tex]\[ -3 - 5(-3) = -3 + 15 = 12 \neq -12 \][/tex]
The point [tex]\((-3, -3)\)[/tex] does not satisfy the first equation. Therefore, this system cannot be the answer.
### System 2:
[tex]\[ x - 5y = -12 \][/tex]
[tex]\[ 3x + 2y = 15 \][/tex]
Substitute [tex]\((x, y) = (-3, -3)\)[/tex]:
1. For the first equation:
[tex]\[ -3 - 5(-3) = -3 + 15 = 12 \neq -12 \][/tex]
The point [tex]\((-3, -3)\)[/tex] does not satisfy the first equation. Therefore, this system cannot be the answer.
### System 3:
[tex]\[ x - 5y = 12 \][/tex]
[tex]\[ 3x + 2y = -15 \][/tex]
Substitute [tex]\((x, y) = (-3, -3)\)[/tex]:
1. For the first equation:
[tex]\[ -3 - 5(-3) = -3 + 15 = 12 \][/tex]
The point [tex]\((-3, -3)\)[/tex] satisfies the first equation.
2. For the second equation:
[tex]\[ 3(-3) + 2(-3) = -9 - 6 = -15 \][/tex]
The point [tex]\((-3, -3)\)[/tex] satisfies the second equation.
Since the point [tex]\((-3, -3)\)[/tex] satisfies both equations, this system could be the correct one.
### System 4:
[tex]\[ x - 5y = 12 \][/tex]
[tex]\[ 3x + 2y = 15 \][/tex]
Substitute [tex]\((x, y) = (-3, -3)\)[/tex]:
1. For the first equation:
[tex]\[ -3 - 5(-3) = -3 + 15 = 12 \][/tex]
The point [tex]\((-3, -3)\)[/tex] satisfies the first equation.
2. For the second equation:
[tex]\[ 3(-3) + 2(-3) = -9 - 6 = -15 \neq 15 \][/tex]
The point [tex]\((-3, -3)\)[/tex] does not satisfy the second equation. Therefore, this system cannot be the answer.
After substituting the point [tex]\((-3, -3)\)[/tex] into each system of equations, we find that the only system that satisfies both equations is:
[tex]\[ \boxed{ x - 5y = 12 \text{ and } 3x + 2y = -15 } \][/tex]
This corresponds to the third system of linear equations.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.