Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure! To find the three angles of a right-angled triangle where the smallest angle and the largest angle are in the ratio 2:5, we can follow these steps:
1. Let's denote the smallest angle as [tex]\( A \)[/tex] and the largest angle (other than the right angle) as [tex]\( B \)[/tex].
2. Since it's a right-angled triangle, one of the angles is [tex]\( 90^\circ \)[/tex]. Let’s denote this angle as [tex]\( C \)[/tex].
Given that the smallest angle and the largest angle are in the ratio 2:5, we can express [tex]\( A \)[/tex] and [tex]\( B \)[/tex] in terms of a common variable [tex]\( x \)[/tex]:
[tex]\[ A = 2x \][/tex]
[tex]\[ B = 5x \][/tex]
3. In any triangle, the sum of the angles must be [tex]\( 180^\circ \)[/tex]. Therefore, we have:
[tex]\[ A + B + C = 180^\circ \][/tex]
Since [tex]\( C \)[/tex] is [tex]\( 90^\circ \)[/tex]:
[tex]\[ 2x + 5x + 90^\circ = 180^\circ \][/tex]
4. Simplify the equation:
[tex]\[ 7x + 90^\circ = 180^\circ \][/tex]
5. Subtract [tex]\( 90^\circ \)[/tex] from both sides:
[tex]\[ 7x = 90^\circ \][/tex]
6. Divide by 7 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{90}{7} \approx 12.857 \][/tex]
7. Now compute the values of the angles [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ A = 2x = 2 \times 12.857 \approx 25.714^\circ \][/tex]
[tex]\[ B = 5x = 5 \times 12.857 \approx 64.286^\circ \][/tex]
So, the three angles of the triangle are:
[tex]\[ \boxed{25.714^\circ, 90^\circ, 64.286^\circ} \][/tex]
1. Let's denote the smallest angle as [tex]\( A \)[/tex] and the largest angle (other than the right angle) as [tex]\( B \)[/tex].
2. Since it's a right-angled triangle, one of the angles is [tex]\( 90^\circ \)[/tex]. Let’s denote this angle as [tex]\( C \)[/tex].
Given that the smallest angle and the largest angle are in the ratio 2:5, we can express [tex]\( A \)[/tex] and [tex]\( B \)[/tex] in terms of a common variable [tex]\( x \)[/tex]:
[tex]\[ A = 2x \][/tex]
[tex]\[ B = 5x \][/tex]
3. In any triangle, the sum of the angles must be [tex]\( 180^\circ \)[/tex]. Therefore, we have:
[tex]\[ A + B + C = 180^\circ \][/tex]
Since [tex]\( C \)[/tex] is [tex]\( 90^\circ \)[/tex]:
[tex]\[ 2x + 5x + 90^\circ = 180^\circ \][/tex]
4. Simplify the equation:
[tex]\[ 7x + 90^\circ = 180^\circ \][/tex]
5. Subtract [tex]\( 90^\circ \)[/tex] from both sides:
[tex]\[ 7x = 90^\circ \][/tex]
6. Divide by 7 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{90}{7} \approx 12.857 \][/tex]
7. Now compute the values of the angles [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ A = 2x = 2 \times 12.857 \approx 25.714^\circ \][/tex]
[tex]\[ B = 5x = 5 \times 12.857 \approx 64.286^\circ \][/tex]
So, the three angles of the triangle are:
[tex]\[ \boxed{25.714^\circ, 90^\circ, 64.286^\circ} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.