Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve this problem, we need to identify the correct values for the magnitude of angular velocity ([tex]\(\omega\)[/tex]), linear velocity ([tex]\(\gamma\)[/tex]), and acceleration ([tex]\(a\)[/tex]) for a body rotating with uniform speed in a circle of radius [tex]\(T\)[/tex].
### Definitions and Formulas
1. Angular Velocity ([tex]\(\omega\)[/tex]):
The angular velocity is the rate at which an object rotates around a circle. If the period (time for one complete revolution) is [tex]\(T\)[/tex], then
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]
2. Linear Velocity ([tex]\(\gamma\)[/tex]):
The linear velocity is the tangential speed of the object moving along the circle. It is related to angular velocity and radius [tex]\(r\)[/tex] by the formula:
[tex]\[ \gamma = r \cdot \omega = r \cdot \frac{2\pi}{T} \][/tex]
3. Centripetal Acceleration ([tex]\(a\)[/tex]):
The centripetal acceleration is given by:
[tex]\[ a = r \cdot \omega^2 = r \cdot \left(\frac{2\pi}{T}\right)^2 = r \cdot \frac{4\pi^2}{T^2} \][/tex]
Given that radius [tex]\(r = T\)[/tex] is assumed (as per the question's context), we can substitute [tex]\(r\)[/tex] with [tex]\(T\)[/tex] in the above formulas.
### Calculations
- Angular Velocity ([tex]\(\omega\)[/tex]):
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]
- Linear Velocity ([tex]\(\gamma\)[/tex]):
[tex]\[ \gamma = T \cdot \frac{2\pi}{T} = 2\pi \][/tex]
- Centripetal Acceleration ([tex]\(a\)[/tex]):
[tex]\[ a = T \cdot \left(\frac{2\pi}{T}\right)^2 = T \cdot \frac{4\pi^2}{T^2} = \frac{4\pi^2}{T} \][/tex]
### Evaluating the Choices
Now, let's evaluate the options given based on our computations:
[tex]\[ \begin{array}{|c|c|c|c|} \hline & \omega & \gamma & a \\ \hline A) & \frac{\pi}{T} & \frac{4\pi T}{T} & \frac{2\pi T}{T^2} \\ \hline B) & \frac{2\pi}{2T} & \frac{2\pi T}{2T} & \frac{\pi^2}{T^2} \\ \hline C) & \frac{2\pi}{T} & \frac{2\pi}{T} & \frac{4\pi^2}{T^2} \\ \hline D) & \frac{2\pi}{T} & \frac{4\pi}{T} & \frac{4\pi^2}{T^2} \\ \hline \end{array} \][/tex]
By comparing the calculations:
- Option C correctly matches with our calculations for [tex]\(\omega\)[/tex], [tex]\(\gamma\)[/tex], and [tex]\(a\)[/tex]:
- [tex]\(\omega = \frac{2\pi}{T}\)[/tex]
- [tex]\(\gamma = 2\pi\)[/tex]
- [tex]\(a = \frac{4\pi^2}{T^2}\)[/tex]
Hence, the correct answer is:
[tex]\[ \boxed{3} \][/tex]
### Definitions and Formulas
1. Angular Velocity ([tex]\(\omega\)[/tex]):
The angular velocity is the rate at which an object rotates around a circle. If the period (time for one complete revolution) is [tex]\(T\)[/tex], then
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]
2. Linear Velocity ([tex]\(\gamma\)[/tex]):
The linear velocity is the tangential speed of the object moving along the circle. It is related to angular velocity and radius [tex]\(r\)[/tex] by the formula:
[tex]\[ \gamma = r \cdot \omega = r \cdot \frac{2\pi}{T} \][/tex]
3. Centripetal Acceleration ([tex]\(a\)[/tex]):
The centripetal acceleration is given by:
[tex]\[ a = r \cdot \omega^2 = r \cdot \left(\frac{2\pi}{T}\right)^2 = r \cdot \frac{4\pi^2}{T^2} \][/tex]
Given that radius [tex]\(r = T\)[/tex] is assumed (as per the question's context), we can substitute [tex]\(r\)[/tex] with [tex]\(T\)[/tex] in the above formulas.
### Calculations
- Angular Velocity ([tex]\(\omega\)[/tex]):
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]
- Linear Velocity ([tex]\(\gamma\)[/tex]):
[tex]\[ \gamma = T \cdot \frac{2\pi}{T} = 2\pi \][/tex]
- Centripetal Acceleration ([tex]\(a\)[/tex]):
[tex]\[ a = T \cdot \left(\frac{2\pi}{T}\right)^2 = T \cdot \frac{4\pi^2}{T^2} = \frac{4\pi^2}{T} \][/tex]
### Evaluating the Choices
Now, let's evaluate the options given based on our computations:
[tex]\[ \begin{array}{|c|c|c|c|} \hline & \omega & \gamma & a \\ \hline A) & \frac{\pi}{T} & \frac{4\pi T}{T} & \frac{2\pi T}{T^2} \\ \hline B) & \frac{2\pi}{2T} & \frac{2\pi T}{2T} & \frac{\pi^2}{T^2} \\ \hline C) & \frac{2\pi}{T} & \frac{2\pi}{T} & \frac{4\pi^2}{T^2} \\ \hline D) & \frac{2\pi}{T} & \frac{4\pi}{T} & \frac{4\pi^2}{T^2} \\ \hline \end{array} \][/tex]
By comparing the calculations:
- Option C correctly matches with our calculations for [tex]\(\omega\)[/tex], [tex]\(\gamma\)[/tex], and [tex]\(a\)[/tex]:
- [tex]\(\omega = \frac{2\pi}{T}\)[/tex]
- [tex]\(\gamma = 2\pi\)[/tex]
- [tex]\(a = \frac{4\pi^2}{T^2}\)[/tex]
Hence, the correct answer is:
[tex]\[ \boxed{3} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.