Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, we need to identify the correct values for the magnitude of angular velocity ([tex]\(\omega\)[/tex]), linear velocity ([tex]\(\gamma\)[/tex]), and acceleration ([tex]\(a\)[/tex]) for a body rotating with uniform speed in a circle of radius [tex]\(T\)[/tex].
### Definitions and Formulas
1. Angular Velocity ([tex]\(\omega\)[/tex]):
The angular velocity is the rate at which an object rotates around a circle. If the period (time for one complete revolution) is [tex]\(T\)[/tex], then
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]
2. Linear Velocity ([tex]\(\gamma\)[/tex]):
The linear velocity is the tangential speed of the object moving along the circle. It is related to angular velocity and radius [tex]\(r\)[/tex] by the formula:
[tex]\[ \gamma = r \cdot \omega = r \cdot \frac{2\pi}{T} \][/tex]
3. Centripetal Acceleration ([tex]\(a\)[/tex]):
The centripetal acceleration is given by:
[tex]\[ a = r \cdot \omega^2 = r \cdot \left(\frac{2\pi}{T}\right)^2 = r \cdot \frac{4\pi^2}{T^2} \][/tex]
Given that radius [tex]\(r = T\)[/tex] is assumed (as per the question's context), we can substitute [tex]\(r\)[/tex] with [tex]\(T\)[/tex] in the above formulas.
### Calculations
- Angular Velocity ([tex]\(\omega\)[/tex]):
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]
- Linear Velocity ([tex]\(\gamma\)[/tex]):
[tex]\[ \gamma = T \cdot \frac{2\pi}{T} = 2\pi \][/tex]
- Centripetal Acceleration ([tex]\(a\)[/tex]):
[tex]\[ a = T \cdot \left(\frac{2\pi}{T}\right)^2 = T \cdot \frac{4\pi^2}{T^2} = \frac{4\pi^2}{T} \][/tex]
### Evaluating the Choices
Now, let's evaluate the options given based on our computations:
[tex]\[ \begin{array}{|c|c|c|c|} \hline & \omega & \gamma & a \\ \hline A) & \frac{\pi}{T} & \frac{4\pi T}{T} & \frac{2\pi T}{T^2} \\ \hline B) & \frac{2\pi}{2T} & \frac{2\pi T}{2T} & \frac{\pi^2}{T^2} \\ \hline C) & \frac{2\pi}{T} & \frac{2\pi}{T} & \frac{4\pi^2}{T^2} \\ \hline D) & \frac{2\pi}{T} & \frac{4\pi}{T} & \frac{4\pi^2}{T^2} \\ \hline \end{array} \][/tex]
By comparing the calculations:
- Option C correctly matches with our calculations for [tex]\(\omega\)[/tex], [tex]\(\gamma\)[/tex], and [tex]\(a\)[/tex]:
- [tex]\(\omega = \frac{2\pi}{T}\)[/tex]
- [tex]\(\gamma = 2\pi\)[/tex]
- [tex]\(a = \frac{4\pi^2}{T^2}\)[/tex]
Hence, the correct answer is:
[tex]\[ \boxed{3} \][/tex]
### Definitions and Formulas
1. Angular Velocity ([tex]\(\omega\)[/tex]):
The angular velocity is the rate at which an object rotates around a circle. If the period (time for one complete revolution) is [tex]\(T\)[/tex], then
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]
2. Linear Velocity ([tex]\(\gamma\)[/tex]):
The linear velocity is the tangential speed of the object moving along the circle. It is related to angular velocity and radius [tex]\(r\)[/tex] by the formula:
[tex]\[ \gamma = r \cdot \omega = r \cdot \frac{2\pi}{T} \][/tex]
3. Centripetal Acceleration ([tex]\(a\)[/tex]):
The centripetal acceleration is given by:
[tex]\[ a = r \cdot \omega^2 = r \cdot \left(\frac{2\pi}{T}\right)^2 = r \cdot \frac{4\pi^2}{T^2} \][/tex]
Given that radius [tex]\(r = T\)[/tex] is assumed (as per the question's context), we can substitute [tex]\(r\)[/tex] with [tex]\(T\)[/tex] in the above formulas.
### Calculations
- Angular Velocity ([tex]\(\omega\)[/tex]):
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]
- Linear Velocity ([tex]\(\gamma\)[/tex]):
[tex]\[ \gamma = T \cdot \frac{2\pi}{T} = 2\pi \][/tex]
- Centripetal Acceleration ([tex]\(a\)[/tex]):
[tex]\[ a = T \cdot \left(\frac{2\pi}{T}\right)^2 = T \cdot \frac{4\pi^2}{T^2} = \frac{4\pi^2}{T} \][/tex]
### Evaluating the Choices
Now, let's evaluate the options given based on our computations:
[tex]\[ \begin{array}{|c|c|c|c|} \hline & \omega & \gamma & a \\ \hline A) & \frac{\pi}{T} & \frac{4\pi T}{T} & \frac{2\pi T}{T^2} \\ \hline B) & \frac{2\pi}{2T} & \frac{2\pi T}{2T} & \frac{\pi^2}{T^2} \\ \hline C) & \frac{2\pi}{T} & \frac{2\pi}{T} & \frac{4\pi^2}{T^2} \\ \hline D) & \frac{2\pi}{T} & \frac{4\pi}{T} & \frac{4\pi^2}{T^2} \\ \hline \end{array} \][/tex]
By comparing the calculations:
- Option C correctly matches with our calculations for [tex]\(\omega\)[/tex], [tex]\(\gamma\)[/tex], and [tex]\(a\)[/tex]:
- [tex]\(\omega = \frac{2\pi}{T}\)[/tex]
- [tex]\(\gamma = 2\pi\)[/tex]
- [tex]\(a = \frac{4\pi^2}{T^2}\)[/tex]
Hence, the correct answer is:
[tex]\[ \boxed{3} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.