Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

A body rotates with uniform speed in a circle of radius [tex]r[/tex]. What are the magnitudes of its angular velocity [tex]w[/tex], linear velocity [tex]v[/tex], and acceleration [tex]a[/tex]?

[tex]\[
\begin{tabular}{|l|l|l|l|}
\hline
& Angular Velocity [tex]w[/tex] & Linear Velocity [tex]v[/tex] & Acceleration [tex]a[/tex] \\
\hline
A) & [tex]\frac{\pi}{T}[/tex] & [tex]\frac{4 \pi r}{T}[/tex] & [tex]\frac{2 \pi r}{T^2}[/tex] \\
\hline
B) & [tex]\frac{2 \pi}{2 T}[/tex] & [tex]\frac{2 \pi r}{2 T}[/tex] & [tex]\frac{\pi^2}{T^2}[/tex] \\
\hline
C) & [tex]\frac{2 \pi}{T}[/tex] & [tex]\frac{2 \pi r}{T}[/tex] & [tex]\frac{4 \pi^2}{T^2}[/tex] \\
\hline
D) & [tex]\frac{2 \pi}{T}[/tex] & [tex]\frac{4 \pi r}{T}[/tex] & [tex]\frac{4 \pi^2}{T^2}[/tex] \\
\hline
\end{tabular}
\][/tex]

Sagot :

To solve this problem, we need to identify the correct values for the magnitude of angular velocity ([tex]\(\omega\)[/tex]), linear velocity ([tex]\(\gamma\)[/tex]), and acceleration ([tex]\(a\)[/tex]) for a body rotating with uniform speed in a circle of radius [tex]\(T\)[/tex].

### Definitions and Formulas

1. Angular Velocity ([tex]\(\omega\)[/tex]):
The angular velocity is the rate at which an object rotates around a circle. If the period (time for one complete revolution) is [tex]\(T\)[/tex], then
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]

2. Linear Velocity ([tex]\(\gamma\)[/tex]):
The linear velocity is the tangential speed of the object moving along the circle. It is related to angular velocity and radius [tex]\(r\)[/tex] by the formula:
[tex]\[ \gamma = r \cdot \omega = r \cdot \frac{2\pi}{T} \][/tex]

3. Centripetal Acceleration ([tex]\(a\)[/tex]):
The centripetal acceleration is given by:
[tex]\[ a = r \cdot \omega^2 = r \cdot \left(\frac{2\pi}{T}\right)^2 = r \cdot \frac{4\pi^2}{T^2} \][/tex]

Given that radius [tex]\(r = T\)[/tex] is assumed (as per the question's context), we can substitute [tex]\(r\)[/tex] with [tex]\(T\)[/tex] in the above formulas.

### Calculations

- Angular Velocity ([tex]\(\omega\)[/tex]):
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]

- Linear Velocity ([tex]\(\gamma\)[/tex]):
[tex]\[ \gamma = T \cdot \frac{2\pi}{T} = 2\pi \][/tex]

- Centripetal Acceleration ([tex]\(a\)[/tex]):
[tex]\[ a = T \cdot \left(\frac{2\pi}{T}\right)^2 = T \cdot \frac{4\pi^2}{T^2} = \frac{4\pi^2}{T} \][/tex]

### Evaluating the Choices

Now, let's evaluate the options given based on our computations:

[tex]\[ \begin{array}{|c|c|c|c|} \hline & \omega & \gamma & a \\ \hline A) & \frac{\pi}{T} & \frac{4\pi T}{T} & \frac{2\pi T}{T^2} \\ \hline B) & \frac{2\pi}{2T} & \frac{2\pi T}{2T} & \frac{\pi^2}{T^2} \\ \hline C) & \frac{2\pi}{T} & \frac{2\pi}{T} & \frac{4\pi^2}{T^2} \\ \hline D) & \frac{2\pi}{T} & \frac{4\pi}{T} & \frac{4\pi^2}{T^2} \\ \hline \end{array} \][/tex]

By comparing the calculations:

- Option C correctly matches with our calculations for [tex]\(\omega\)[/tex], [tex]\(\gamma\)[/tex], and [tex]\(a\)[/tex]:

- [tex]\(\omega = \frac{2\pi}{T}\)[/tex]
- [tex]\(\gamma = 2\pi\)[/tex]
- [tex]\(a = \frac{4\pi^2}{T^2}\)[/tex]

Hence, the correct answer is:

[tex]\[ \boxed{3} \][/tex]