Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Given the equation [tex]\(\tan(\theta) = -\sqrt{19}\)[/tex] and that [tex]\(\theta\)[/tex] is in the second quadrant, we aim to find the value of [tex]\(\cos(\theta)\)[/tex]. Here is a step-by-step solution to determine this:
1. Identify the properties of the tangent and cosine functions in quadrants:
- In the second quadrant, [tex]\(\tan(\theta)\)[/tex] is negative, [tex]\(\sin(\theta)\)[/tex] is positive, and [tex]\(\cos(\theta)\)[/tex] is negative.
2. Use the trigonometric identities:
The Pythagorean identity states:
[tex]\[ 1 + \tan^2(\theta) = \sec^2(\theta) \][/tex]
Given [tex]\(\tan(\theta) = -\sqrt{19}\)[/tex]:
[tex]\[ \tan^2(\theta) = (-\sqrt{19})^2 = 19 \][/tex]
[tex]\[ 1 + 19 = \sec^2(\theta) \][/tex]
[tex]\[ \sec^2(\theta) = 20 \][/tex]
3. Relate the secant and cosine functions:
[tex]\[ \sec(\theta) = \frac{1}{\cos(\theta)} \][/tex]
Therefore, [tex]\(\sec^2(\theta) = \frac{1}{\cos^2(\theta)}\)[/tex]:
[tex]\[ \frac{1}{\cos^2(\theta)} = 20 \][/tex]
[tex]\[ \cos^2(\theta) = \frac{1}{20} \][/tex]
4. Determine [tex]\(\cos(\theta)\)[/tex]:
Since we are in the second quadrant and [tex]\(\cos(\theta)\)[/tex] is negative:
[tex]\[ \cos(\theta) = -\sqrt{\frac{1}{20}} = -\frac{1}{\sqrt{20}} \][/tex]
Simplifying further:
[tex]\[ \cos(\theta) = -\frac{1}{\sqrt{20}} = -\frac{1}{2\sqrt{5}} = -\frac{\sqrt{5}}{10} \][/tex]
Given:
[tex]\[ \frac{\sqrt{5}\cdot\sqrt{2}}{10\cdot\sqrt{2}} = -\frac{\sqrt{10}}{10\cdot2} = -\frac{\sqrt{10}}{8} = \cos(\theta) \][/tex]
Upon comparing this result with the given options:
A. [tex]\(-\frac{\sqrt{17}}{6}\)[/tex]
B. [tex]\(\frac{\sqrt{17}}{6}\)[/tex]
C. [tex]\(-\frac{\sqrt{12}}{6}\)[/tex]
D. [tex]\(\frac{\sqrt{10}}{8}\)[/tex]
We find that none exactly matches our reduced form [tex]\(\cos(\theta) = -\frac{\sqrt{10}}{8}\)[/tex]. Thus:
None of the calculated options are correct selections as per exact reduction we performed.
* Correction, since this value is consistent with the given cosine evaluation of one:
```
We return [tex]\(\boxed{-\frac{\sqrt{10}}{8}}\)[/tex]
```
1. Identify the properties of the tangent and cosine functions in quadrants:
- In the second quadrant, [tex]\(\tan(\theta)\)[/tex] is negative, [tex]\(\sin(\theta)\)[/tex] is positive, and [tex]\(\cos(\theta)\)[/tex] is negative.
2. Use the trigonometric identities:
The Pythagorean identity states:
[tex]\[ 1 + \tan^2(\theta) = \sec^2(\theta) \][/tex]
Given [tex]\(\tan(\theta) = -\sqrt{19}\)[/tex]:
[tex]\[ \tan^2(\theta) = (-\sqrt{19})^2 = 19 \][/tex]
[tex]\[ 1 + 19 = \sec^2(\theta) \][/tex]
[tex]\[ \sec^2(\theta) = 20 \][/tex]
3. Relate the secant and cosine functions:
[tex]\[ \sec(\theta) = \frac{1}{\cos(\theta)} \][/tex]
Therefore, [tex]\(\sec^2(\theta) = \frac{1}{\cos^2(\theta)}\)[/tex]:
[tex]\[ \frac{1}{\cos^2(\theta)} = 20 \][/tex]
[tex]\[ \cos^2(\theta) = \frac{1}{20} \][/tex]
4. Determine [tex]\(\cos(\theta)\)[/tex]:
Since we are in the second quadrant and [tex]\(\cos(\theta)\)[/tex] is negative:
[tex]\[ \cos(\theta) = -\sqrt{\frac{1}{20}} = -\frac{1}{\sqrt{20}} \][/tex]
Simplifying further:
[tex]\[ \cos(\theta) = -\frac{1}{\sqrt{20}} = -\frac{1}{2\sqrt{5}} = -\frac{\sqrt{5}}{10} \][/tex]
Given:
[tex]\[ \frac{\sqrt{5}\cdot\sqrt{2}}{10\cdot\sqrt{2}} = -\frac{\sqrt{10}}{10\cdot2} = -\frac{\sqrt{10}}{8} = \cos(\theta) \][/tex]
Upon comparing this result with the given options:
A. [tex]\(-\frac{\sqrt{17}}{6}\)[/tex]
B. [tex]\(\frac{\sqrt{17}}{6}\)[/tex]
C. [tex]\(-\frac{\sqrt{12}}{6}\)[/tex]
D. [tex]\(\frac{\sqrt{10}}{8}\)[/tex]
We find that none exactly matches our reduced form [tex]\(\cos(\theta) = -\frac{\sqrt{10}}{8}\)[/tex]. Thus:
None of the calculated options are correct selections as per exact reduction we performed.
* Correction, since this value is consistent with the given cosine evaluation of one:
```
We return [tex]\(\boxed{-\frac{\sqrt{10}}{8}}\)[/tex]
```
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.