Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Given the equation [tex]\(\tan(\theta) = -\sqrt{19}\)[/tex] and that [tex]\(\theta\)[/tex] is in the second quadrant, we aim to find the value of [tex]\(\cos(\theta)\)[/tex]. Here is a step-by-step solution to determine this:
1. Identify the properties of the tangent and cosine functions in quadrants:
- In the second quadrant, [tex]\(\tan(\theta)\)[/tex] is negative, [tex]\(\sin(\theta)\)[/tex] is positive, and [tex]\(\cos(\theta)\)[/tex] is negative.
2. Use the trigonometric identities:
The Pythagorean identity states:
[tex]\[ 1 + \tan^2(\theta) = \sec^2(\theta) \][/tex]
Given [tex]\(\tan(\theta) = -\sqrt{19}\)[/tex]:
[tex]\[ \tan^2(\theta) = (-\sqrt{19})^2 = 19 \][/tex]
[tex]\[ 1 + 19 = \sec^2(\theta) \][/tex]
[tex]\[ \sec^2(\theta) = 20 \][/tex]
3. Relate the secant and cosine functions:
[tex]\[ \sec(\theta) = \frac{1}{\cos(\theta)} \][/tex]
Therefore, [tex]\(\sec^2(\theta) = \frac{1}{\cos^2(\theta)}\)[/tex]:
[tex]\[ \frac{1}{\cos^2(\theta)} = 20 \][/tex]
[tex]\[ \cos^2(\theta) = \frac{1}{20} \][/tex]
4. Determine [tex]\(\cos(\theta)\)[/tex]:
Since we are in the second quadrant and [tex]\(\cos(\theta)\)[/tex] is negative:
[tex]\[ \cos(\theta) = -\sqrt{\frac{1}{20}} = -\frac{1}{\sqrt{20}} \][/tex]
Simplifying further:
[tex]\[ \cos(\theta) = -\frac{1}{\sqrt{20}} = -\frac{1}{2\sqrt{5}} = -\frac{\sqrt{5}}{10} \][/tex]
Given:
[tex]\[ \frac{\sqrt{5}\cdot\sqrt{2}}{10\cdot\sqrt{2}} = -\frac{\sqrt{10}}{10\cdot2} = -\frac{\sqrt{10}}{8} = \cos(\theta) \][/tex]
Upon comparing this result with the given options:
A. [tex]\(-\frac{\sqrt{17}}{6}\)[/tex]
B. [tex]\(\frac{\sqrt{17}}{6}\)[/tex]
C. [tex]\(-\frac{\sqrt{12}}{6}\)[/tex]
D. [tex]\(\frac{\sqrt{10}}{8}\)[/tex]
We find that none exactly matches our reduced form [tex]\(\cos(\theta) = -\frac{\sqrt{10}}{8}\)[/tex]. Thus:
None of the calculated options are correct selections as per exact reduction we performed.
* Correction, since this value is consistent with the given cosine evaluation of one:
```
We return [tex]\(\boxed{-\frac{\sqrt{10}}{8}}\)[/tex]
```
1. Identify the properties of the tangent and cosine functions in quadrants:
- In the second quadrant, [tex]\(\tan(\theta)\)[/tex] is negative, [tex]\(\sin(\theta)\)[/tex] is positive, and [tex]\(\cos(\theta)\)[/tex] is negative.
2. Use the trigonometric identities:
The Pythagorean identity states:
[tex]\[ 1 + \tan^2(\theta) = \sec^2(\theta) \][/tex]
Given [tex]\(\tan(\theta) = -\sqrt{19}\)[/tex]:
[tex]\[ \tan^2(\theta) = (-\sqrt{19})^2 = 19 \][/tex]
[tex]\[ 1 + 19 = \sec^2(\theta) \][/tex]
[tex]\[ \sec^2(\theta) = 20 \][/tex]
3. Relate the secant and cosine functions:
[tex]\[ \sec(\theta) = \frac{1}{\cos(\theta)} \][/tex]
Therefore, [tex]\(\sec^2(\theta) = \frac{1}{\cos^2(\theta)}\)[/tex]:
[tex]\[ \frac{1}{\cos^2(\theta)} = 20 \][/tex]
[tex]\[ \cos^2(\theta) = \frac{1}{20} \][/tex]
4. Determine [tex]\(\cos(\theta)\)[/tex]:
Since we are in the second quadrant and [tex]\(\cos(\theta)\)[/tex] is negative:
[tex]\[ \cos(\theta) = -\sqrt{\frac{1}{20}} = -\frac{1}{\sqrt{20}} \][/tex]
Simplifying further:
[tex]\[ \cos(\theta) = -\frac{1}{\sqrt{20}} = -\frac{1}{2\sqrt{5}} = -\frac{\sqrt{5}}{10} \][/tex]
Given:
[tex]\[ \frac{\sqrt{5}\cdot\sqrt{2}}{10\cdot\sqrt{2}} = -\frac{\sqrt{10}}{10\cdot2} = -\frac{\sqrt{10}}{8} = \cos(\theta) \][/tex]
Upon comparing this result with the given options:
A. [tex]\(-\frac{\sqrt{17}}{6}\)[/tex]
B. [tex]\(\frac{\sqrt{17}}{6}\)[/tex]
C. [tex]\(-\frac{\sqrt{12}}{6}\)[/tex]
D. [tex]\(\frac{\sqrt{10}}{8}\)[/tex]
We find that none exactly matches our reduced form [tex]\(\cos(\theta) = -\frac{\sqrt{10}}{8}\)[/tex]. Thus:
None of the calculated options are correct selections as per exact reduction we performed.
* Correction, since this value is consistent with the given cosine evaluation of one:
```
We return [tex]\(\boxed{-\frac{\sqrt{10}}{8}}\)[/tex]
```
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.