Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the domain of the function [tex]\( y = \sin(x) \)[/tex], we must understand what inputs [tex]\( x \)[/tex] we are allowed to use in the function such that [tex]\( y = \sin(x) \)[/tex] is defined.
The sine function [tex]\( \sin(x) \)[/tex] is a trigonometric function that relates the angle [tex]\( x \)[/tex] to a ratio of sides in a right-angled triangle. Importantly, the sine function is defined for all real numbers [tex]\( x \)[/tex]. This means that no matter what real number you choose for [tex]\( x \)[/tex], you will always get a valid output [tex]\( \sin(x) \)[/tex].
Let's analyze the options provided to identify the correct domain:
A. [tex]\( (-\infty, \infty) \)[/tex]: This notation represents all real numbers, meaning [tex]\( x \)[/tex] can be any real number. Since we know that the sine function is defined for all real numbers, this option could be correct.
B. [tex]\( 2\pi \)[/tex]: This notation [tex]\( 2\pi \)[/tex] alone does not represent a range or set of values but rather a single number. By specifying [tex]\( 2\pi \)[/tex], it implies that the domain would only include the number [tex]\( 2\pi \)[/tex], which is incorrect, as [tex]\( \sin(x) \)[/tex] is defined for more than just this single value.
C. [tex]\( [0, \infty) \)[/tex]: This represents all non-negative real numbers, including [tex]\( 0 \)[/tex]. Although the sine function is defined for those values, the domain of [tex]\( \sin(x) \)[/tex] should include negative values as well.
D. [tex]\(\{1, 1\}\)[/tex]: This notation is not correctly formatted as a domain representation. Also, it seems to represent the set containing just the number 1. This is incorrect because the function [tex]\( y = \sin(x) \)[/tex] is not limited to just [tex]\( x = 1 \)[/tex]; it is defined for all real numbers.
Having examined all options, we can conclude that the correct domain of the function [tex]\( y = \sin(x) \)[/tex] is:
A. [tex]\( (-\infty, \infty) \)[/tex].
Therefore, the correct answer is [tex]\( A \)[/tex].
The sine function [tex]\( \sin(x) \)[/tex] is a trigonometric function that relates the angle [tex]\( x \)[/tex] to a ratio of sides in a right-angled triangle. Importantly, the sine function is defined for all real numbers [tex]\( x \)[/tex]. This means that no matter what real number you choose for [tex]\( x \)[/tex], you will always get a valid output [tex]\( \sin(x) \)[/tex].
Let's analyze the options provided to identify the correct domain:
A. [tex]\( (-\infty, \infty) \)[/tex]: This notation represents all real numbers, meaning [tex]\( x \)[/tex] can be any real number. Since we know that the sine function is defined for all real numbers, this option could be correct.
B. [tex]\( 2\pi \)[/tex]: This notation [tex]\( 2\pi \)[/tex] alone does not represent a range or set of values but rather a single number. By specifying [tex]\( 2\pi \)[/tex], it implies that the domain would only include the number [tex]\( 2\pi \)[/tex], which is incorrect, as [tex]\( \sin(x) \)[/tex] is defined for more than just this single value.
C. [tex]\( [0, \infty) \)[/tex]: This represents all non-negative real numbers, including [tex]\( 0 \)[/tex]. Although the sine function is defined for those values, the domain of [tex]\( \sin(x) \)[/tex] should include negative values as well.
D. [tex]\(\{1, 1\}\)[/tex]: This notation is not correctly formatted as a domain representation. Also, it seems to represent the set containing just the number 1. This is incorrect because the function [tex]\( y = \sin(x) \)[/tex] is not limited to just [tex]\( x = 1 \)[/tex]; it is defined for all real numbers.
Having examined all options, we can conclude that the correct domain of the function [tex]\( y = \sin(x) \)[/tex] is:
A. [tex]\( (-\infty, \infty) \)[/tex].
Therefore, the correct answer is [tex]\( A \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.