At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's break down the problem step by step to determine the correct expression for the number of bags that do not contain diabetic food.
1. Understand the problem statement:
- [tex]\( b \)[/tex] represents the total number of bags.
- 15 less than half of the bags will include diabetic food.
2. Formulate the expression for bags containing diabetic food:
- Half of the total number of bags is [tex]\( \frac{1}{2}b \)[/tex].
- 15 less than this half would be [tex]\( \frac{1}{2}b - 15 \)[/tex].
3. Determine the number of bags that do not contain diabetic food:
- The number of bags that do not contain diabetic food would be the total number of bags minus the number of bags that contain diabetic food.
- So, the expression we need to evaluate is [tex]\( b - \left(\frac{1}{2}b - 15\right) \)[/tex].
4. Simplify the expression:
- Distribute the subtraction across the parentheses:
[tex]\[ b - \left(\frac{1}{2}b - 15\right) = b - \frac{1}{2}b + 15 \][/tex]
Therefore, the correct expression representing the number of bags that do not contain diabetic food is:
[tex]\[ b - \left(\frac{1}{2}\right) b + 15 \][/tex]
So the answer is:
[tex]\[ b - \left(\frac{1}{2} \right) b + 15 \][/tex]
1. Understand the problem statement:
- [tex]\( b \)[/tex] represents the total number of bags.
- 15 less than half of the bags will include diabetic food.
2. Formulate the expression for bags containing diabetic food:
- Half of the total number of bags is [tex]\( \frac{1}{2}b \)[/tex].
- 15 less than this half would be [tex]\( \frac{1}{2}b - 15 \)[/tex].
3. Determine the number of bags that do not contain diabetic food:
- The number of bags that do not contain diabetic food would be the total number of bags minus the number of bags that contain diabetic food.
- So, the expression we need to evaluate is [tex]\( b - \left(\frac{1}{2}b - 15\right) \)[/tex].
4. Simplify the expression:
- Distribute the subtraction across the parentheses:
[tex]\[ b - \left(\frac{1}{2}b - 15\right) = b - \frac{1}{2}b + 15 \][/tex]
Therefore, the correct expression representing the number of bags that do not contain diabetic food is:
[tex]\[ b - \left(\frac{1}{2}\right) b + 15 \][/tex]
So the answer is:
[tex]\[ b - \left(\frac{1}{2} \right) b + 15 \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.