Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine for which value of [tex]\( x \)[/tex] the given rational expression is equal to zero, we need to analyze when the numerator of the expression is zero, while ensuring that the denominator is non-zero to avoid division by zero.
The given rational expression is:
[tex]\[ \frac{x-4}{(x+5)(x-1)} \][/tex]
Here are the steps to find the value of [tex]\( x \)[/tex]:
1. Set the numerator equal to zero:
The numerator of the rational expression is [tex]\( x - 4 \)[/tex]. For the overall expression to be zero, the numerator must be zero. Therefore, we set:
[tex]\[ x - 4 = 0 \][/tex]
2. Solve for [tex]\( x \)[/tex]:
We solve the equation [tex]\( x - 4 = 0 \)[/tex]:
[tex]\[ x = 4 \][/tex]
Thus, [tex]\( x = 4 \)[/tex] is a candidate for making the rational expression equal to zero.
3. Check the denominator:
The denominator of the rational expression is [tex]\( (x + 5)(x - 1) \)[/tex]. We need to ensure that this denominator is not zero when [tex]\( x = 4 \)[/tex]:
[tex]\[ (4 + 5)(4 - 1) = 9 \cdot 3 \neq 0 \][/tex]
Since the denominator is non-zero when [tex]\( x = 4 \)[/tex], the rational expression is defined at this point.
Thus, the rational expression [tex]\(\frac{x-4}{(x+5)(x-1)}\)[/tex] is equal to zero for:
[tex]\[ \boxed{4} \][/tex]
The given rational expression is:
[tex]\[ \frac{x-4}{(x+5)(x-1)} \][/tex]
Here are the steps to find the value of [tex]\( x \)[/tex]:
1. Set the numerator equal to zero:
The numerator of the rational expression is [tex]\( x - 4 \)[/tex]. For the overall expression to be zero, the numerator must be zero. Therefore, we set:
[tex]\[ x - 4 = 0 \][/tex]
2. Solve for [tex]\( x \)[/tex]:
We solve the equation [tex]\( x - 4 = 0 \)[/tex]:
[tex]\[ x = 4 \][/tex]
Thus, [tex]\( x = 4 \)[/tex] is a candidate for making the rational expression equal to zero.
3. Check the denominator:
The denominator of the rational expression is [tex]\( (x + 5)(x - 1) \)[/tex]. We need to ensure that this denominator is not zero when [tex]\( x = 4 \)[/tex]:
[tex]\[ (4 + 5)(4 - 1) = 9 \cdot 3 \neq 0 \][/tex]
Since the denominator is non-zero when [tex]\( x = 4 \)[/tex], the rational expression is defined at this point.
Thus, the rational expression [tex]\(\frac{x-4}{(x+5)(x-1)}\)[/tex] is equal to zero for:
[tex]\[ \boxed{4} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.