Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

If [tex][tex]$1.9 \text{ kJ}$[/tex][/tex] of heat is transferred to [tex][tex]$96 \text{ g}$[/tex][/tex] aluminum at [tex][tex]$113^{\circ} \text{C}$[/tex][/tex], what would the new temperature of the aluminum be? (The specific heat capacity of aluminum is [tex][tex]$0.897 \text{ J/g} \cdot{ }^{\circ} \text{C}$[/tex][/tex].)

Sagot :

Certainly! Let's solve this step-by-step:

1. Given Values:
- Amount of heat transferred ([tex]\( q \)[/tex]): [tex]\( 1.9 \)[/tex] kJ
- Mass of aluminum ([tex]\( m \)[/tex]): [tex]\( 96 \)[/tex] g
- Initial temperature of aluminum ([tex]\( T_{\text{initial}} \)[/tex]): [tex]\( 113 \)[/tex]°C
- Specific heat capacity of aluminum ([tex]\( c \)[/tex]): [tex]\( 0.897 \)[/tex] J/(g·°C)

2. Convert heat transferred from kilojoules to joules:
[tex]\[ q = 1.9 \, \text{kJ} \times 1000 \, \left(\frac{\text{J}}{\text{kJ}}\right) = 1900 \, \text{J} \][/tex]

3. Use the formula to calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ q = m \times c \times \Delta T \][/tex]
We need to solve for [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = \frac{q}{m \times c} \][/tex]

4. Substitute the known values into the formula:
[tex]\[ \Delta T = \frac{1900 \, \text{J}}{96 \, \text{g} \times 0.897 \, \frac{\text{J}}{\text{g} \cdot \, °\text{C}}} \][/tex]
[tex]\[ \Delta T \approx 22.064 \, °\text{C} \][/tex]

5. Calculate the new temperature of the aluminum:
[tex]\[ T_{\text{new}} = T_{\text{initial}} + \Delta T \][/tex]
[tex]\[ T_{\text{new}} = 113 \,°\text{C} + 22.064 \,°\text{C} \][/tex]
[tex]\[ T_{\text{new}} \approx 135.064 \, °\text{C} \][/tex]

So, the new temperature of the aluminum after [tex]\( 1.9 \)[/tex] kJ of heat is transferred to it would be approximately [tex]\( 135.064 \)[/tex]°C.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.