At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the limit of [tex]\(\left( \frac{\ln x}{x} \right)^{1 / \ln x}\)[/tex] as [tex]\(x \to \infty\)[/tex], we need to carefully analyze the behavior of the expression as [tex]\(x\)[/tex] grows larger.
[tex]\[ \lim _{x \rightarrow \infty}\left(\frac{\ln x}{x}\right)^{1 / \ln x} \][/tex]
First, let's denote the given expression as [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = \left( \frac{\ln x}{x} \right)^{1 / \ln x} \][/tex]
Taking the natural logarithm of [tex]\( f(x) \)[/tex] will help simplify the analysis. Let:
[tex]\[ L = \ln(f(x)) = \ln \left( \left( \frac{\ln x}{x} \right)^{1 / \ln x} \right) \][/tex]
Using the logarithm power rule [tex]\( \ln(a^b) = b\ln(a) \)[/tex]:
[tex]\[ L = \frac{1}{\ln x} \ln \left( \frac{\ln x}{x} \right) \][/tex]
Next, we can split the logarithm inside:
[tex]\[ L = \frac{1}{\ln x} \left( \ln (\ln x) - \ln x \right) \][/tex]
Separate the terms in the fraction:
[tex]\[ L = \frac{\ln (\ln x)}{\ln x} - \frac{\ln x}{\ln x} \][/tex]
[tex]\[ L = \frac{\ln (\ln x)}{\ln x} - 1 \][/tex]
Now, we are interested in finding the limit of [tex]\( L \)[/tex] as [tex]\( x \to \infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} L = \lim_{x \to \infty} \left( \frac{\ln (\ln x)}{\ln x} - 1 \right) \][/tex]
Consider each term separately. First, observe the fraction [tex]\(\frac{\ln (\ln x)}{\ln x}\)[/tex]:
As [tex]\( x \to \infty \)[/tex], both [tex]\( \ln x \)[/tex] and [tex]\( \ln(\ln x) \)[/tex] increase, but [tex]\( \ln x \)[/tex] increases much faster than [tex]\( \ln(\ln x) \)[/tex]. Hence, we can conclude:
[tex]\[ \lim_{x \to \infty} \frac{\ln (\ln x)}{\ln x} = 0 \][/tex]
Thus, the limit of [tex]\( L \)[/tex] becomes:
[tex]\[ \lim_{x \to \infty} L = 0 - 1 = -1 \][/tex]
We have determined that:
[tex]\[ \ln(f(x)) \to -1 \][/tex]
Finally, to find the limit of [tex]\( f(x) \)[/tex], we exponentiate both sides:
[tex]\[ f(x) \to e^{-1} \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{x \to \infty} \left( \frac{\ln x}{x} \right)^{1 / \ln x} = e^{-1} \][/tex]
Thus, the answer is:
[tex]\[ e^{-1} \][/tex]
[tex]\[ \lim _{x \rightarrow \infty}\left(\frac{\ln x}{x}\right)^{1 / \ln x} \][/tex]
First, let's denote the given expression as [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = \left( \frac{\ln x}{x} \right)^{1 / \ln x} \][/tex]
Taking the natural logarithm of [tex]\( f(x) \)[/tex] will help simplify the analysis. Let:
[tex]\[ L = \ln(f(x)) = \ln \left( \left( \frac{\ln x}{x} \right)^{1 / \ln x} \right) \][/tex]
Using the logarithm power rule [tex]\( \ln(a^b) = b\ln(a) \)[/tex]:
[tex]\[ L = \frac{1}{\ln x} \ln \left( \frac{\ln x}{x} \right) \][/tex]
Next, we can split the logarithm inside:
[tex]\[ L = \frac{1}{\ln x} \left( \ln (\ln x) - \ln x \right) \][/tex]
Separate the terms in the fraction:
[tex]\[ L = \frac{\ln (\ln x)}{\ln x} - \frac{\ln x}{\ln x} \][/tex]
[tex]\[ L = \frac{\ln (\ln x)}{\ln x} - 1 \][/tex]
Now, we are interested in finding the limit of [tex]\( L \)[/tex] as [tex]\( x \to \infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} L = \lim_{x \to \infty} \left( \frac{\ln (\ln x)}{\ln x} - 1 \right) \][/tex]
Consider each term separately. First, observe the fraction [tex]\(\frac{\ln (\ln x)}{\ln x}\)[/tex]:
As [tex]\( x \to \infty \)[/tex], both [tex]\( \ln x \)[/tex] and [tex]\( \ln(\ln x) \)[/tex] increase, but [tex]\( \ln x \)[/tex] increases much faster than [tex]\( \ln(\ln x) \)[/tex]. Hence, we can conclude:
[tex]\[ \lim_{x \to \infty} \frac{\ln (\ln x)}{\ln x} = 0 \][/tex]
Thus, the limit of [tex]\( L \)[/tex] becomes:
[tex]\[ \lim_{x \to \infty} L = 0 - 1 = -1 \][/tex]
We have determined that:
[tex]\[ \ln(f(x)) \to -1 \][/tex]
Finally, to find the limit of [tex]\( f(x) \)[/tex], we exponentiate both sides:
[tex]\[ f(x) \to e^{-1} \][/tex]
Therefore, the limit is:
[tex]\[ \lim_{x \to \infty} \left( \frac{\ln x}{x} \right)^{1 / \ln x} = e^{-1} \][/tex]
Thus, the answer is:
[tex]\[ e^{-1} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.