Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the correct range for [tex]\(\theta\)[/tex] where both [tex]\(\sin \theta < 0\)[/tex] and [tex]\(\tan \theta < 0\)[/tex], we need to understand the behavior of these trigonometric functions in different quadrants.
1. Sine function ([tex]\(\sin \theta\)[/tex]):
- [tex]\(\sin \theta > 0\)[/tex] in the first and second quadrants.
- [tex]\(\sin \theta < 0\)[/tex] in the third and fourth quadrants.
2. Tangent function ([tex]\(\tan \theta\)[/tex]):
- [tex]\(\tan \theta > 0\)[/tex] in the first and third quadrants.
- [tex]\(\tan \theta < 0\)[/tex] in the second and fourth quadrants.
Now, let's analyze the conditions given:
- [tex]\(\sin \theta < 0\)[/tex] implies [tex]\(\theta\)[/tex] must be in the third or fourth quadrant.
- [tex]\(\tan \theta < 0\)[/tex] implies [tex]\(\theta\)[/tex] must be in the second or fourth quadrant.
The only quadrant where both conditions ([tex]\(\sin \theta < 0\)[/tex] and [tex]\(\tan \theta < 0\)[/tex]) are satisfied is in the fourth quadrant.
In the fourth quadrant, the range of [tex]\(\theta\)[/tex] is [tex]\(270^\circ < \theta < 360^\circ\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{270^\circ < \theta < 360^\circ} \][/tex]
This corresponds to option B:
[tex]\[ \text{B. } 270^\circ < \theta < 360^\circ \][/tex]
1. Sine function ([tex]\(\sin \theta\)[/tex]):
- [tex]\(\sin \theta > 0\)[/tex] in the first and second quadrants.
- [tex]\(\sin \theta < 0\)[/tex] in the third and fourth quadrants.
2. Tangent function ([tex]\(\tan \theta\)[/tex]):
- [tex]\(\tan \theta > 0\)[/tex] in the first and third quadrants.
- [tex]\(\tan \theta < 0\)[/tex] in the second and fourth quadrants.
Now, let's analyze the conditions given:
- [tex]\(\sin \theta < 0\)[/tex] implies [tex]\(\theta\)[/tex] must be in the third or fourth quadrant.
- [tex]\(\tan \theta < 0\)[/tex] implies [tex]\(\theta\)[/tex] must be in the second or fourth quadrant.
The only quadrant where both conditions ([tex]\(\sin \theta < 0\)[/tex] and [tex]\(\tan \theta < 0\)[/tex]) are satisfied is in the fourth quadrant.
In the fourth quadrant, the range of [tex]\(\theta\)[/tex] is [tex]\(270^\circ < \theta < 360^\circ\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{270^\circ < \theta < 360^\circ} \][/tex]
This corresponds to option B:
[tex]\[ \text{B. } 270^\circ < \theta < 360^\circ \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.