At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To plot the solutions to the inequality [tex]\(\frac{x}{2} > \frac{5}{2}\)[/tex] on a number line, let's go through the steps in detail:
1. Rewrite the Inequality in a Simpler Form:
The given inequality is [tex]\(\frac{x}{2} > \frac{5}{2}\)[/tex].
- To eliminate the fractions, multiply both sides of the inequality by 2.
[tex]\[ 2 \cdot \frac{x}{2} > 2 \cdot \frac{5}{2} \][/tex]
- This simplifies to:
[tex]\[ x > 5 \][/tex]
2. Identify the Solution Set:
The inequality [tex]\(x > 5\)[/tex] means that [tex]\(x\)[/tex] can be any number greater than 5.
3. Determine the Type of Endpoint:
- The inequality is strict (i.e., [tex]\(x\)[/tex] is not equal to 5, but greater than 5).
- This means we will use an open circle to show that 5 is not included in the solution set.
4. Plot on a Number Line:
- Draw a horizontal line to represent the number line.
- Mark the point [tex]\(5\)[/tex] on the number line.
- Place an open circle at [tex]\(5\)[/tex] to indicate that [tex]\(5\)[/tex] is not included.
- Shade the region to the right of [tex]\(5\)[/tex] to show all numbers greater than [tex]\(5\)[/tex].
Here is how the number line looks:
[tex]\[ \begin{array}{c|cccccccccccccccccc} \text{Number line:} &&& & \circ & \longrightarrow & & & & & & & & & & \\ &&& & 5 & & & & & & & & & & & & & & \\ \end{array} \][/tex]
- The open circle at [tex]\(5\)[/tex] indicates that [tex]\(5\)[/tex] itself is not part of the solution.
- The shading to the right of [tex]\(5\)[/tex] shows that all numbers greater than [tex]\(5\)[/tex] are included in the solution set.
1. Rewrite the Inequality in a Simpler Form:
The given inequality is [tex]\(\frac{x}{2} > \frac{5}{2}\)[/tex].
- To eliminate the fractions, multiply both sides of the inequality by 2.
[tex]\[ 2 \cdot \frac{x}{2} > 2 \cdot \frac{5}{2} \][/tex]
- This simplifies to:
[tex]\[ x > 5 \][/tex]
2. Identify the Solution Set:
The inequality [tex]\(x > 5\)[/tex] means that [tex]\(x\)[/tex] can be any number greater than 5.
3. Determine the Type of Endpoint:
- The inequality is strict (i.e., [tex]\(x\)[/tex] is not equal to 5, but greater than 5).
- This means we will use an open circle to show that 5 is not included in the solution set.
4. Plot on a Number Line:
- Draw a horizontal line to represent the number line.
- Mark the point [tex]\(5\)[/tex] on the number line.
- Place an open circle at [tex]\(5\)[/tex] to indicate that [tex]\(5\)[/tex] is not included.
- Shade the region to the right of [tex]\(5\)[/tex] to show all numbers greater than [tex]\(5\)[/tex].
Here is how the number line looks:
[tex]\[ \begin{array}{c|cccccccccccccccccc} \text{Number line:} &&& & \circ & \longrightarrow & & & & & & & & & & \\ &&& & 5 & & & & & & & & & & & & & & \\ \end{array} \][/tex]
- The open circle at [tex]\(5\)[/tex] indicates that [tex]\(5\)[/tex] itself is not part of the solution.
- The shading to the right of [tex]\(5\)[/tex] shows that all numbers greater than [tex]\(5\)[/tex] are included in the solution set.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.