At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's break down the problem step-by-step to calculate the required derivatives.
### 1.1 Given [tex]\( f(x) = 1 - 5x^2 \)[/tex], determine [tex]\( f'(x) \)[/tex] from first principles.
To find the derivative of a function [tex]\( f(x) \)[/tex] from first principles, we use the definition of the derivative:
[tex]\[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \][/tex]
For [tex]\( f(x) = 1 - 5x^2 \)[/tex]:
1. Calculate [tex]\( f(x + h) \)[/tex]:
[tex]\[ f(x + h) = 1 - 5(x+h)^2 \][/tex]
[tex]\[ = 1 - 5(x^2 + 2xh + h^2) \][/tex]
[tex]\[ = 1 - 5x^2 - 10xh - 5h^2 \][/tex]
2. Calculate [tex]\( f(x + h) - f(x) \)[/tex]:
[tex]\[ f(x + h) - f(x) = (1 - 5x^2 - 10xh - 5h^2) - (1 - 5x^2) \][/tex]
[tex]\[ = -10xh - 5h^2 \][/tex]
3. Substitute into the definition of the derivative:
[tex]\[ f'(x) = \lim_{h \to 0} \frac{-10xh - 5h^2}{h} \][/tex]
[tex]\[ = \lim_{h \to 0} (-10x - 5h) \][/tex]
When [tex]\( h \)[/tex] approaches 0, the term [tex]\( -5h \)[/tex] approaches 0, so:
[tex]\[ f'(x) = -10x \][/tex]
Therefore, [tex]\( f'(x) = -10x \)[/tex].
### 1.2 Differentiate with respect to [tex]\( x \)[/tex]:
#### 1.2.1 [tex]\( y = (2x - 1)^2 \)[/tex]
To differentiate [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], we use the chain rule:
[tex]\[ y = (2x - 1)^2 \][/tex]
Differentiate the outer function first, then the inner function:
[tex]\[ \frac{dy}{dx} = 2(2x - 1) \cdot \frac{d}{dx}(2x - 1) \][/tex]
[tex]\[ = 2(2x - 1) \cdot 2 \][/tex]
[tex]\[ = 4(2x - 1) \][/tex]
[tex]\[ = 8x - 4 \][/tex]
Therefore, [tex]\( \frac{dy}{dx} = 8x - 4 \)[/tex].
#### 1.2.2 [tex]\( y = \sqrt{x} (1 - \sqrt[3]{x}) \)[/tex]
To differentiate [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], apply the product rule combined with the chain rule. Let [tex]\( u = \sqrt{x} \)[/tex] and [tex]\( v = 1 - \sqrt[3]{x} \)[/tex].
[tex]\[ y = u \cdot v \][/tex]
First, find [tex]\( \frac{du}{dx} \)[/tex] and [tex]\( \frac{dv}{dx} \)[/tex]:
[tex]\[ u = x^{1/2} \Rightarrow \frac{du}{dx} = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \][/tex]
[tex]\[ v = 1 - x^{1/3} \Rightarrow \frac{dv}{dx} = -\frac{1}{3} x^{-2/3} \][/tex]
Now apply the product rule:
[tex]\[ \frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} \][/tex]
[tex]\[ \frac{dy}{dx} = \sqrt{x} \left(-\frac{1}{3} x^{-2/3}\right) + (1 - x^{1/3}) \left(\frac{1}{2\sqrt{x}}\right) \][/tex]
Simplify each term:
[tex]\[ \frac{dy}{dx} = -\frac{1}{3} x^{1/2 - 2/3} + \frac{1 - x^{1/3}}{2x^{1/2}} \][/tex]
[tex]\[ = -\frac{1}{3} x^{-1/6} + \frac{1 - x^{1/3}}{2\sqrt{x}} \][/tex]
Therefore:
[tex]\[ \frac{dy}{dx} = -0.333333333333333/x^{0.166666666666667} + \frac{1 - x^{0.333333333333333}}{2\sqrt{x}} \][/tex]
#### 1.2.3 [tex]\( D_x \left[ \frac{8x^3 - 27}{2x - 3} \right] \)[/tex]
To differentiate [tex]\( \frac{8x^3 - 27}{2x - 3} \)[/tex] with respect to [tex]\( x \)[/tex], we use the quotient rule:
Let [tex]\( u = 8x^3 - 27 \)[/tex] and [tex]\( v = 2x - 3 \)[/tex].
Quotient rule states:
[tex]\[ \frac{du}{dx} = 24x^2 \][/tex]
[tex]\[ \frac{dv}{dx} = 2 \][/tex]
[tex]\[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \][/tex]
Substitute [tex]\( u \)[/tex], [tex]\( v \)[/tex], [tex]\( \frac{du}{dx} \)[/tex], and [tex]\( \frac{dv}{dx} \)[/tex]:
[tex]\[ \frac{d}{dx} \left( \frac{8x^3 - 27}{2x - 3} \right) = \frac{(2x - 3) \cdot 24x^2 - (8x^3 - 27) \cdot 2}{(2x - 3)^2} \][/tex]
Simplify:
[tex]\[ = \frac{48x^2 (2x - 3) - 16x^3 + 54}{(2x - 3)^2} \][/tex]
[tex]\[ = \frac{96x^3 - 144x^2 - 16x^3 + 54}{(2x - 3)^2} \][/tex]
[tex]\[ = \frac{80x^3 - 144x^2 + 54}{(2x - 3)^2} \][/tex]
This comprehensively solves the differentiation tasks.
### 1.1 Given [tex]\( f(x) = 1 - 5x^2 \)[/tex], determine [tex]\( f'(x) \)[/tex] from first principles.
To find the derivative of a function [tex]\( f(x) \)[/tex] from first principles, we use the definition of the derivative:
[tex]\[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \][/tex]
For [tex]\( f(x) = 1 - 5x^2 \)[/tex]:
1. Calculate [tex]\( f(x + h) \)[/tex]:
[tex]\[ f(x + h) = 1 - 5(x+h)^2 \][/tex]
[tex]\[ = 1 - 5(x^2 + 2xh + h^2) \][/tex]
[tex]\[ = 1 - 5x^2 - 10xh - 5h^2 \][/tex]
2. Calculate [tex]\( f(x + h) - f(x) \)[/tex]:
[tex]\[ f(x + h) - f(x) = (1 - 5x^2 - 10xh - 5h^2) - (1 - 5x^2) \][/tex]
[tex]\[ = -10xh - 5h^2 \][/tex]
3. Substitute into the definition of the derivative:
[tex]\[ f'(x) = \lim_{h \to 0} \frac{-10xh - 5h^2}{h} \][/tex]
[tex]\[ = \lim_{h \to 0} (-10x - 5h) \][/tex]
When [tex]\( h \)[/tex] approaches 0, the term [tex]\( -5h \)[/tex] approaches 0, so:
[tex]\[ f'(x) = -10x \][/tex]
Therefore, [tex]\( f'(x) = -10x \)[/tex].
### 1.2 Differentiate with respect to [tex]\( x \)[/tex]:
#### 1.2.1 [tex]\( y = (2x - 1)^2 \)[/tex]
To differentiate [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], we use the chain rule:
[tex]\[ y = (2x - 1)^2 \][/tex]
Differentiate the outer function first, then the inner function:
[tex]\[ \frac{dy}{dx} = 2(2x - 1) \cdot \frac{d}{dx}(2x - 1) \][/tex]
[tex]\[ = 2(2x - 1) \cdot 2 \][/tex]
[tex]\[ = 4(2x - 1) \][/tex]
[tex]\[ = 8x - 4 \][/tex]
Therefore, [tex]\( \frac{dy}{dx} = 8x - 4 \)[/tex].
#### 1.2.2 [tex]\( y = \sqrt{x} (1 - \sqrt[3]{x}) \)[/tex]
To differentiate [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], apply the product rule combined with the chain rule. Let [tex]\( u = \sqrt{x} \)[/tex] and [tex]\( v = 1 - \sqrt[3]{x} \)[/tex].
[tex]\[ y = u \cdot v \][/tex]
First, find [tex]\( \frac{du}{dx} \)[/tex] and [tex]\( \frac{dv}{dx} \)[/tex]:
[tex]\[ u = x^{1/2} \Rightarrow \frac{du}{dx} = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \][/tex]
[tex]\[ v = 1 - x^{1/3} \Rightarrow \frac{dv}{dx} = -\frac{1}{3} x^{-2/3} \][/tex]
Now apply the product rule:
[tex]\[ \frac{dy}{dx} = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} \][/tex]
[tex]\[ \frac{dy}{dx} = \sqrt{x} \left(-\frac{1}{3} x^{-2/3}\right) + (1 - x^{1/3}) \left(\frac{1}{2\sqrt{x}}\right) \][/tex]
Simplify each term:
[tex]\[ \frac{dy}{dx} = -\frac{1}{3} x^{1/2 - 2/3} + \frac{1 - x^{1/3}}{2x^{1/2}} \][/tex]
[tex]\[ = -\frac{1}{3} x^{-1/6} + \frac{1 - x^{1/3}}{2\sqrt{x}} \][/tex]
Therefore:
[tex]\[ \frac{dy}{dx} = -0.333333333333333/x^{0.166666666666667} + \frac{1 - x^{0.333333333333333}}{2\sqrt{x}} \][/tex]
#### 1.2.3 [tex]\( D_x \left[ \frac{8x^3 - 27}{2x - 3} \right] \)[/tex]
To differentiate [tex]\( \frac{8x^3 - 27}{2x - 3} \)[/tex] with respect to [tex]\( x \)[/tex], we use the quotient rule:
Let [tex]\( u = 8x^3 - 27 \)[/tex] and [tex]\( v = 2x - 3 \)[/tex].
Quotient rule states:
[tex]\[ \frac{du}{dx} = 24x^2 \][/tex]
[tex]\[ \frac{dv}{dx} = 2 \][/tex]
[tex]\[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \][/tex]
Substitute [tex]\( u \)[/tex], [tex]\( v \)[/tex], [tex]\( \frac{du}{dx} \)[/tex], and [tex]\( \frac{dv}{dx} \)[/tex]:
[tex]\[ \frac{d}{dx} \left( \frac{8x^3 - 27}{2x - 3} \right) = \frac{(2x - 3) \cdot 24x^2 - (8x^3 - 27) \cdot 2}{(2x - 3)^2} \][/tex]
Simplify:
[tex]\[ = \frac{48x^2 (2x - 3) - 16x^3 + 54}{(2x - 3)^2} \][/tex]
[tex]\[ = \frac{96x^3 - 144x^2 - 16x^3 + 54}{(2x - 3)^2} \][/tex]
[tex]\[ = \frac{80x^3 - 144x^2 + 54}{(2x - 3)^2} \][/tex]
This comprehensively solves the differentiation tasks.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.