Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's work step-by-step through the problem involving the depth of the pond increasing each week due to the rainy season.
### Problem Statement
Due to the rainy season, the depth in a pond increases by 3% each week. Before the rainy season started, the pond was 10 feet deep. We are looking for an equation that best represents the depth of the pond each week.
### Given Information
- Initial depth of the pond [tex]\( P = 10 \)[/tex] feet
- Weekly increase rate [tex]\( r = 3\% = 0.03 \)[/tex]
### Formula to Use
The appropriate formula to represent exponential growth is:
[tex]\[ y = P (1 + r)^x \][/tex]
Where:
- [tex]\( y \)[/tex] is the depth of the pond after [tex]\( x \)[/tex] weeks.
- [tex]\( P \)[/tex] is the initial depth of the pond.
- [tex]\( r \)[/tex] is the rate of increase per period (week, in this case).
- [tex]\( x \)[/tex] is the number of weeks.
### Step-by-Step Solution
1. Initial Depth:
The initial depth [tex]\( P \)[/tex] is given to be 10 feet.
2. Weekly Increase Rate:
The depth of the pond increases by 3% each week which translates to [tex]\( r = 0.03 \)[/tex].
3. Equation for Depth After [tex]\( x \)[/tex] Weeks:
By substituting [tex]\( P = 10 \)[/tex] feet and [tex]\( r = 0.03 \)[/tex] into the general formula:
[tex]\[ y = 10 (1 + 0.03)^x \][/tex]
Simplifying inside the parentheses:
[tex]\[ y = 10 (1.03)^x \][/tex]
Therefore, the equation that best represents the depth of the pond each week is:
[tex]\[ y = 10 (1.03)^x \][/tex]
### Verification with Given Data
Let's verify by calculating the depths for few different weeks:
1. After 1 Week:
[tex]\[ y = 10 \times (1.03)^1 = 10 \times 1.03 = 10.3 \text{ feet} \][/tex]
2. After 2 Weeks:
[tex]\[ y = 10 \times (1.03)^2 = 10 \times 1.0609 = 10.609 \text{ feet} \][/tex]
3. After 4 Weeks:
[tex]\[ y = 10 \times (1.03)^4 = 10 \times 1.12550881 = 11.2550881 \text{ feet} \][/tex]
These results verify that the provided equation [tex]\( y = 10 (1.03)^x \)[/tex] correctly represents the increase in depth of the pond due to the rainy season.
### Problem Statement
Due to the rainy season, the depth in a pond increases by 3% each week. Before the rainy season started, the pond was 10 feet deep. We are looking for an equation that best represents the depth of the pond each week.
### Given Information
- Initial depth of the pond [tex]\( P = 10 \)[/tex] feet
- Weekly increase rate [tex]\( r = 3\% = 0.03 \)[/tex]
### Formula to Use
The appropriate formula to represent exponential growth is:
[tex]\[ y = P (1 + r)^x \][/tex]
Where:
- [tex]\( y \)[/tex] is the depth of the pond after [tex]\( x \)[/tex] weeks.
- [tex]\( P \)[/tex] is the initial depth of the pond.
- [tex]\( r \)[/tex] is the rate of increase per period (week, in this case).
- [tex]\( x \)[/tex] is the number of weeks.
### Step-by-Step Solution
1. Initial Depth:
The initial depth [tex]\( P \)[/tex] is given to be 10 feet.
2. Weekly Increase Rate:
The depth of the pond increases by 3% each week which translates to [tex]\( r = 0.03 \)[/tex].
3. Equation for Depth After [tex]\( x \)[/tex] Weeks:
By substituting [tex]\( P = 10 \)[/tex] feet and [tex]\( r = 0.03 \)[/tex] into the general formula:
[tex]\[ y = 10 (1 + 0.03)^x \][/tex]
Simplifying inside the parentheses:
[tex]\[ y = 10 (1.03)^x \][/tex]
Therefore, the equation that best represents the depth of the pond each week is:
[tex]\[ y = 10 (1.03)^x \][/tex]
### Verification with Given Data
Let's verify by calculating the depths for few different weeks:
1. After 1 Week:
[tex]\[ y = 10 \times (1.03)^1 = 10 \times 1.03 = 10.3 \text{ feet} \][/tex]
2. After 2 Weeks:
[tex]\[ y = 10 \times (1.03)^2 = 10 \times 1.0609 = 10.609 \text{ feet} \][/tex]
3. After 4 Weeks:
[tex]\[ y = 10 \times (1.03)^4 = 10 \times 1.12550881 = 11.2550881 \text{ feet} \][/tex]
These results verify that the provided equation [tex]\( y = 10 (1.03)^x \)[/tex] correctly represents the increase in depth of the pond due to the rainy season.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.