Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly, let's find the product of the given rational expressions step by step.
The problem provides two rational expressions:
[tex]\[ \frac{3x}{x+1} \quad \text{and} \quad \frac{x}{x-7} \][/tex]
To multiply these rational expressions, we follow these steps:
1. Multiply the numerators: Multiply the numerators of both expressions together.
2. Multiply the denominators: Multiply the denominators of both expressions together.
3. Simplify the resulting expression.
First, let's multiply the numerators:
[tex]\[ 3x \cdot x = 3x^2 \][/tex]
Next, let's multiply the denominators:
[tex]\[ (x+1) \cdot (x-7) = (x+1)(x-7) \][/tex]
So the product of the rational expressions before simplification is:
[tex]\[ \frac{3x^2}{(x+1)(x-7)} \][/tex]
Now we need to simplify the denominator. Let's expand [tex]\( (x+1)(x-7) \)[/tex]:
[tex]\[ (x+1)(x-7) = x \cdot x + x \cdot (-7) + 1 \cdot x + 1 \cdot (-7) \\ = x^2 - 7x + x - 7 \\ = x^2 - 6x - 7 \][/tex]
Now we can rewrite the rational expression with the expanded denominator:
[tex]\[ \frac{3x^2}{x^2 - 6x - 7} \][/tex]
After simplification, the final product of the rational expressions is:
[tex]\[ \frac{3x^2}{x^2-6x-7} \][/tex]
This matches with option A. Therefore, the correct answer is:
[tex]\[ \boxed{\frac{3 x^2}{x^2-6 x-7}} \][/tex]
The problem provides two rational expressions:
[tex]\[ \frac{3x}{x+1} \quad \text{and} \quad \frac{x}{x-7} \][/tex]
To multiply these rational expressions, we follow these steps:
1. Multiply the numerators: Multiply the numerators of both expressions together.
2. Multiply the denominators: Multiply the denominators of both expressions together.
3. Simplify the resulting expression.
First, let's multiply the numerators:
[tex]\[ 3x \cdot x = 3x^2 \][/tex]
Next, let's multiply the denominators:
[tex]\[ (x+1) \cdot (x-7) = (x+1)(x-7) \][/tex]
So the product of the rational expressions before simplification is:
[tex]\[ \frac{3x^2}{(x+1)(x-7)} \][/tex]
Now we need to simplify the denominator. Let's expand [tex]\( (x+1)(x-7) \)[/tex]:
[tex]\[ (x+1)(x-7) = x \cdot x + x \cdot (-7) + 1 \cdot x + 1 \cdot (-7) \\ = x^2 - 7x + x - 7 \\ = x^2 - 6x - 7 \][/tex]
Now we can rewrite the rational expression with the expanded denominator:
[tex]\[ \frac{3x^2}{x^2 - 6x - 7} \][/tex]
After simplification, the final product of the rational expressions is:
[tex]\[ \frac{3x^2}{x^2-6x-7} \][/tex]
This matches with option A. Therefore, the correct answer is:
[tex]\[ \boxed{\frac{3 x^2}{x^2-6 x-7}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.