Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the problem of finding the quotient of two given rational expressions, let's go through the solution step by step:
First, we are given the following rational expression to divide:
[tex]\[ \frac{3x - 6}{x^3} \div \frac{x - 2}{2x - 1} \][/tex]
1. Rewrite the division as multiplication by the reciprocal:
Division of fractions is equivalent to multiplying by the reciprocal of the second fraction. Therefore, we can rewrite the problem as:
[tex]\[ \frac{3x - 6}{x^3} \times \frac{2x - 1}{x - 2} \][/tex]
2. Multiply the numerators and denominators:
Multiply the numerators together:
[tex]\[ (3x - 6)(2x - 1) \][/tex]
Multiply the denominators together:
[tex]\[ x^3 (x - 2) \][/tex]
3. Combine the expressions:
Putting it all together gives:
[tex]\[ \frac{(3x - 6)(2x - 1)}{x^3 (x - 2)} \][/tex]
4. Simplify the numerator:
The numerator [tex]\((3x - 6)(2x - 1)\)[/tex] simplifies as follows:
[tex]\[ 3x \cdot 2x + 3x \cdot (-1) + (-6) \cdot 2x + (-6) \cdot (-1) = 6x^2 - 3x - 12x + 6 = 6x^2 - 15x + 6 \][/tex]
5. Simplify the denominator:
The denominator [tex]\(x^3 (x - 2)\)[/tex] simplifies as follows:
[tex]\[ x^3 \cdot (x - 2) = x^4 - 2x^3 \][/tex]
6. Combine simplified expressions:
Therefore, the simplified form of the quotient of the rational expressions is:
[tex]\[ \frac{6x^2 - 15x + 6}{x^4 - 2x^3} \][/tex]
Hence, the correct answer among the given options is:
E. [tex]\(\frac{6 x^2 - 15 x + 6}{x^4 - 2 x^3}\)[/tex]
First, we are given the following rational expression to divide:
[tex]\[ \frac{3x - 6}{x^3} \div \frac{x - 2}{2x - 1} \][/tex]
1. Rewrite the division as multiplication by the reciprocal:
Division of fractions is equivalent to multiplying by the reciprocal of the second fraction. Therefore, we can rewrite the problem as:
[tex]\[ \frac{3x - 6}{x^3} \times \frac{2x - 1}{x - 2} \][/tex]
2. Multiply the numerators and denominators:
Multiply the numerators together:
[tex]\[ (3x - 6)(2x - 1) \][/tex]
Multiply the denominators together:
[tex]\[ x^3 (x - 2) \][/tex]
3. Combine the expressions:
Putting it all together gives:
[tex]\[ \frac{(3x - 6)(2x - 1)}{x^3 (x - 2)} \][/tex]
4. Simplify the numerator:
The numerator [tex]\((3x - 6)(2x - 1)\)[/tex] simplifies as follows:
[tex]\[ 3x \cdot 2x + 3x \cdot (-1) + (-6) \cdot 2x + (-6) \cdot (-1) = 6x^2 - 3x - 12x + 6 = 6x^2 - 15x + 6 \][/tex]
5. Simplify the denominator:
The denominator [tex]\(x^3 (x - 2)\)[/tex] simplifies as follows:
[tex]\[ x^3 \cdot (x - 2) = x^4 - 2x^3 \][/tex]
6. Combine simplified expressions:
Therefore, the simplified form of the quotient of the rational expressions is:
[tex]\[ \frac{6x^2 - 15x + 6}{x^4 - 2x^3} \][/tex]
Hence, the correct answer among the given options is:
E. [tex]\(\frac{6 x^2 - 15 x + 6}{x^4 - 2 x^3}\)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.