Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To understand the transformation given by [tex]\((x, y) \rightarrow (y, -x)\)[/tex], we need to explore what this transformation does to a point in the Cartesian plane.
1. Original Point: Consider any point [tex]\((x, y)\)[/tex] in the plane.
2. Transformation: The rule [tex]\((x, y) \rightarrow (y, -x)\)[/tex] means the new coordinates of the point after the transformation will be [tex]\((y, -x)\)[/tex].
To determine which rotation this transformation represents, we can examine the effects of standard rotations around the origin:
- [tex]\(R_{0, 90^{\circ}}\)[/tex]: Rotates a point 90 degrees counterclockwise around the origin.
- The formula for this rotation is [tex]\((x, y) \rightarrow (-y, x)\)[/tex].
- [tex]\(R_{0, 180^{\circ}}\)[/tex]: Rotates a point 180 degrees counterclockwise around the origin.
- The formula for this rotation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex].
- [tex]\(R_{0, 270^{\circ}}\)[/tex]: Rotates a point 270 degrees counterclockwise around the origin or 90 degrees clockwise.
- The formula for this rotation is [tex]\((x, y) \rightarrow (y, -x)\)[/tex].
- [tex]\(R_{0, 360^{\circ}}\)[/tex]: This essentially brings the point back to its original position.
- The formula for this rotation is [tex]\((x, y) \rightarrow (x, y)\)[/tex].
Comparing the given rule transformation [tex]\( (x, y) \rightarrow (y, -x) \)[/tex] to these standard rotation formulas, we can see that [tex]\( (x, y) \rightarrow (y, -x) \)[/tex] matches the formula for [tex]\(R_{0, 270^{\circ}}\)[/tex].
Thus, the transformation [tex]\((x, y) \rightarrow (y, -x)\)[/tex] can be described as a rotation of 270 degrees counterclockwise around the origin.
Therefore, the correct answer is:
[tex]\(R_{0, 270^{\circ}}\)[/tex].
1. Original Point: Consider any point [tex]\((x, y)\)[/tex] in the plane.
2. Transformation: The rule [tex]\((x, y) \rightarrow (y, -x)\)[/tex] means the new coordinates of the point after the transformation will be [tex]\((y, -x)\)[/tex].
To determine which rotation this transformation represents, we can examine the effects of standard rotations around the origin:
- [tex]\(R_{0, 90^{\circ}}\)[/tex]: Rotates a point 90 degrees counterclockwise around the origin.
- The formula for this rotation is [tex]\((x, y) \rightarrow (-y, x)\)[/tex].
- [tex]\(R_{0, 180^{\circ}}\)[/tex]: Rotates a point 180 degrees counterclockwise around the origin.
- The formula for this rotation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex].
- [tex]\(R_{0, 270^{\circ}}\)[/tex]: Rotates a point 270 degrees counterclockwise around the origin or 90 degrees clockwise.
- The formula for this rotation is [tex]\((x, y) \rightarrow (y, -x)\)[/tex].
- [tex]\(R_{0, 360^{\circ}}\)[/tex]: This essentially brings the point back to its original position.
- The formula for this rotation is [tex]\((x, y) \rightarrow (x, y)\)[/tex].
Comparing the given rule transformation [tex]\( (x, y) \rightarrow (y, -x) \)[/tex] to these standard rotation formulas, we can see that [tex]\( (x, y) \rightarrow (y, -x) \)[/tex] matches the formula for [tex]\(R_{0, 270^{\circ}}\)[/tex].
Thus, the transformation [tex]\((x, y) \rightarrow (y, -x)\)[/tex] can be described as a rotation of 270 degrees counterclockwise around the origin.
Therefore, the correct answer is:
[tex]\(R_{0, 270^{\circ}}\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.