Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To understand the transformation given by [tex]\((x, y) \rightarrow (y, -x)\)[/tex], we need to explore what this transformation does to a point in the Cartesian plane.
1. Original Point: Consider any point [tex]\((x, y)\)[/tex] in the plane.
2. Transformation: The rule [tex]\((x, y) \rightarrow (y, -x)\)[/tex] means the new coordinates of the point after the transformation will be [tex]\((y, -x)\)[/tex].
To determine which rotation this transformation represents, we can examine the effects of standard rotations around the origin:
- [tex]\(R_{0, 90^{\circ}}\)[/tex]: Rotates a point 90 degrees counterclockwise around the origin.
- The formula for this rotation is [tex]\((x, y) \rightarrow (-y, x)\)[/tex].
- [tex]\(R_{0, 180^{\circ}}\)[/tex]: Rotates a point 180 degrees counterclockwise around the origin.
- The formula for this rotation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex].
- [tex]\(R_{0, 270^{\circ}}\)[/tex]: Rotates a point 270 degrees counterclockwise around the origin or 90 degrees clockwise.
- The formula for this rotation is [tex]\((x, y) \rightarrow (y, -x)\)[/tex].
- [tex]\(R_{0, 360^{\circ}}\)[/tex]: This essentially brings the point back to its original position.
- The formula for this rotation is [tex]\((x, y) \rightarrow (x, y)\)[/tex].
Comparing the given rule transformation [tex]\( (x, y) \rightarrow (y, -x) \)[/tex] to these standard rotation formulas, we can see that [tex]\( (x, y) \rightarrow (y, -x) \)[/tex] matches the formula for [tex]\(R_{0, 270^{\circ}}\)[/tex].
Thus, the transformation [tex]\((x, y) \rightarrow (y, -x)\)[/tex] can be described as a rotation of 270 degrees counterclockwise around the origin.
Therefore, the correct answer is:
[tex]\(R_{0, 270^{\circ}}\)[/tex].
1. Original Point: Consider any point [tex]\((x, y)\)[/tex] in the plane.
2. Transformation: The rule [tex]\((x, y) \rightarrow (y, -x)\)[/tex] means the new coordinates of the point after the transformation will be [tex]\((y, -x)\)[/tex].
To determine which rotation this transformation represents, we can examine the effects of standard rotations around the origin:
- [tex]\(R_{0, 90^{\circ}}\)[/tex]: Rotates a point 90 degrees counterclockwise around the origin.
- The formula for this rotation is [tex]\((x, y) \rightarrow (-y, x)\)[/tex].
- [tex]\(R_{0, 180^{\circ}}\)[/tex]: Rotates a point 180 degrees counterclockwise around the origin.
- The formula for this rotation is [tex]\((x, y) \rightarrow (-x, -y)\)[/tex].
- [tex]\(R_{0, 270^{\circ}}\)[/tex]: Rotates a point 270 degrees counterclockwise around the origin or 90 degrees clockwise.
- The formula for this rotation is [tex]\((x, y) \rightarrow (y, -x)\)[/tex].
- [tex]\(R_{0, 360^{\circ}}\)[/tex]: This essentially brings the point back to its original position.
- The formula for this rotation is [tex]\((x, y) \rightarrow (x, y)\)[/tex].
Comparing the given rule transformation [tex]\( (x, y) \rightarrow (y, -x) \)[/tex] to these standard rotation formulas, we can see that [tex]\( (x, y) \rightarrow (y, -x) \)[/tex] matches the formula for [tex]\(R_{0, 270^{\circ}}\)[/tex].
Thus, the transformation [tex]\((x, y) \rightarrow (y, -x)\)[/tex] can be described as a rotation of 270 degrees counterclockwise around the origin.
Therefore, the correct answer is:
[tex]\(R_{0, 270^{\circ}}\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.