Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the quotient of the rational expressions [tex]\(\frac{2x}{4x+3} \div \frac{x-1}{2x}\)[/tex], we need to follow the steps of division for fractions, which involves multiplying by the reciprocal of the divisor. Let's break it down step-by-step:
1. Identify the given expressions:
[tex]\[\frac{2x}{4x+3}\][/tex]
[tex]\(\div\)[/tex]
[tex]\[\frac{x-1}{2x}\][/tex]
2. Rewrite the division as multiplication by the reciprocal of the divisor:
[tex]\[\frac{2x}{4x+3} \times \frac{2x}{x-1}\][/tex]
3. Multiply the numerators together and the denominators together:
The numerators are:
[tex]\[2x \times 2x = 4x^2\][/tex]
The denominators are:
[tex]\[(4x + 3) \times (x - 1) = 4x(x - 1) + 3(x - 1)\][/tex]
4. Distribute in the denominator:
[tex]\[4x(x - 1) = 4x^2 - 4x\][/tex]
[tex]\[3(x - 1) = 3x - 3\][/tex]
5. Combine the distributed parts of the denominator:
[tex]\[ (4x^2 - 4x) + (3x - 3) = 4x^2 - 4x + 3x - 3 = 4x^2 - x - 3 \][/tex]
6. Write the complete expression after multiplication:
[tex]\[\frac{4x^2}{4x^2 - x - 3}\][/tex]
Thus, the quotient of the rational expressions [tex]\(\frac{2x}{4x+3} \div \frac{x-1}{2x}\)[/tex] is
[tex]\[\boxed{\frac{4x^2}{4x^2 - x - 3}}\][/tex]
This matches option B given in the problem.
1. Identify the given expressions:
[tex]\[\frac{2x}{4x+3}\][/tex]
[tex]\(\div\)[/tex]
[tex]\[\frac{x-1}{2x}\][/tex]
2. Rewrite the division as multiplication by the reciprocal of the divisor:
[tex]\[\frac{2x}{4x+3} \times \frac{2x}{x-1}\][/tex]
3. Multiply the numerators together and the denominators together:
The numerators are:
[tex]\[2x \times 2x = 4x^2\][/tex]
The denominators are:
[tex]\[(4x + 3) \times (x - 1) = 4x(x - 1) + 3(x - 1)\][/tex]
4. Distribute in the denominator:
[tex]\[4x(x - 1) = 4x^2 - 4x\][/tex]
[tex]\[3(x - 1) = 3x - 3\][/tex]
5. Combine the distributed parts of the denominator:
[tex]\[ (4x^2 - 4x) + (3x - 3) = 4x^2 - 4x + 3x - 3 = 4x^2 - x - 3 \][/tex]
6. Write the complete expression after multiplication:
[tex]\[\frac{4x^2}{4x^2 - x - 3}\][/tex]
Thus, the quotient of the rational expressions [tex]\(\frac{2x}{4x+3} \div \frac{x-1}{2x}\)[/tex] is
[tex]\[\boxed{\frac{4x^2}{4x^2 - x - 3}}\][/tex]
This matches option B given in the problem.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.