Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
We are given the height of the ball as a function of time [tex]\( f(x) = -16(x^2 - 5x - 6) \)[/tex]. We need to determine when the height of the ball is 0, which means we must solve for [tex]\( x \)[/tex] in the equation [tex]\( f(x) = 0 \)[/tex].
The equation representing the height of the ball is:
[tex]\[ f(x) = -16(x^2 - 5x - 6) \][/tex]
First, we set the equation equal to zero to find the x-intercepts (the times when the ball touches the ground):
[tex]\[ -16(x^2 - 5x - 6) = 0 \][/tex]
To solve for [tex]\( x \)[/tex], we remove the factor of -16 by dividing both sides of the equation by -16:
[tex]\[ x^2 - 5x - 6 = 0 \][/tex]
Next, we solve the quadratic equation [tex]\( x^2 - 5x - 6 = 0 \)[/tex] using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], we have:
[tex]\[ a = 1, \quad b = -5, \quad c = -6 \][/tex]
Plugging these values into the quadratic formula gives:
[tex]\[ x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-6)}}{2(1)} \][/tex]
[tex]\[ x = \frac{5 \pm \sqrt{25 + 24}}{2} \][/tex]
[tex]\[ x = \frac{5 \pm \sqrt{49}}{2} \][/tex]
[tex]\[ x = \frac{5 \pm 7}{2} \][/tex]
This gives us two possible solutions:
[tex]\[ x = \frac{5 + 7}{2} = \frac{12}{2} = 6 \][/tex]
[tex]\[ x = \frac{5 - 7}{2} = \frac{-2}{2} = -1 \][/tex]
Since [tex]\( x \)[/tex] represents the number of seconds since the ball was thrown, we discard the negative value [tex]\( x = -1 \)[/tex], as it doesn't make sense in the context of time. Thus, the only feasible solution is:
[tex]\[ x = 6 \][/tex]
Therefore, the ball takes [tex]\( 6 \)[/tex] seconds to reach the ground.
The correct answer is:
C. 6
The equation representing the height of the ball is:
[tex]\[ f(x) = -16(x^2 - 5x - 6) \][/tex]
First, we set the equation equal to zero to find the x-intercepts (the times when the ball touches the ground):
[tex]\[ -16(x^2 - 5x - 6) = 0 \][/tex]
To solve for [tex]\( x \)[/tex], we remove the factor of -16 by dividing both sides of the equation by -16:
[tex]\[ x^2 - 5x - 6 = 0 \][/tex]
Next, we solve the quadratic equation [tex]\( x^2 - 5x - 6 = 0 \)[/tex] using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], we have:
[tex]\[ a = 1, \quad b = -5, \quad c = -6 \][/tex]
Plugging these values into the quadratic formula gives:
[tex]\[ x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-6)}}{2(1)} \][/tex]
[tex]\[ x = \frac{5 \pm \sqrt{25 + 24}}{2} \][/tex]
[tex]\[ x = \frac{5 \pm \sqrt{49}}{2} \][/tex]
[tex]\[ x = \frac{5 \pm 7}{2} \][/tex]
This gives us two possible solutions:
[tex]\[ x = \frac{5 + 7}{2} = \frac{12}{2} = 6 \][/tex]
[tex]\[ x = \frac{5 - 7}{2} = \frac{-2}{2} = -1 \][/tex]
Since [tex]\( x \)[/tex] represents the number of seconds since the ball was thrown, we discard the negative value [tex]\( x = -1 \)[/tex], as it doesn't make sense in the context of time. Thus, the only feasible solution is:
[tex]\[ x = 6 \][/tex]
Therefore, the ball takes [tex]\( 6 \)[/tex] seconds to reach the ground.
The correct answer is:
C. 6
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.