Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine for which values of [tex]\( x \)[/tex] the two expressions
[tex]\[ \frac{(x-1)(x-6)}{4(x-1)} = \frac{x-6}{4} \][/tex]
are equal, let's follow a step-by-step approach to simplify and solve the equation.
1. Simplify the equation:
Let's first simplify [tex]\(\frac{(x-1)(x-6)}{4(x-1)}\)[/tex].
Notice that in the fraction [tex]\(\frac{(x-1)(x-6)}{4(x-1)}\)[/tex], the term [tex]\(x-1\)[/tex] appears in both the numerator and the denominator. If [tex]\( x \neq 1 \)[/tex], we can cancel [tex]\( x-1 \)[/tex] from both the numerator and the denominator:
[tex]\[ \frac{(x-1)(x-6)}{4(x-1)} = \frac{x-6}{4} \][/tex]
2. Establish the condition:
After canceling [tex]\( x-1 \)[/tex], the equation simplifies to:
[tex]\[ \frac{x-6}{4} = \frac{x-6}{4} \][/tex]
This simplified equation is true for all values of [tex]\( x \)[/tex] that do not cause a division by zero or make the cancellation invalid.
3. Identify invalid values:
It is important to remember that the cancellation of [tex]\( x-1 \)[/tex] is valid only if [tex]\( x \neq 1 \)[/tex]. If [tex]\( x = 1 \)[/tex], the original denominator would be zero:
[tex]\[ 4(x-1) = 4(1-1) = 4 \cdot 0 = 0 \][/tex]
Division by zero is undefined, so [tex]\( x = 1 \)[/tex] is not a permissible solution.
4. Conclusion:
Therefore, the solution to the equation [tex]\(\frac{(x-1)(x-6)}{4(x-1)} = \frac{x-6}{4}\)[/tex] is all real numbers [tex]\( x \)[/tex] except [tex]\( x = 1 \)[/tex].
In summary:
[tex]\[ x \text{ can be any real number except } x = 1. \][/tex]
[tex]\[ \frac{(x-1)(x-6)}{4(x-1)} = \frac{x-6}{4} \][/tex]
are equal, let's follow a step-by-step approach to simplify and solve the equation.
1. Simplify the equation:
Let's first simplify [tex]\(\frac{(x-1)(x-6)}{4(x-1)}\)[/tex].
Notice that in the fraction [tex]\(\frac{(x-1)(x-6)}{4(x-1)}\)[/tex], the term [tex]\(x-1\)[/tex] appears in both the numerator and the denominator. If [tex]\( x \neq 1 \)[/tex], we can cancel [tex]\( x-1 \)[/tex] from both the numerator and the denominator:
[tex]\[ \frac{(x-1)(x-6)}{4(x-1)} = \frac{x-6}{4} \][/tex]
2. Establish the condition:
After canceling [tex]\( x-1 \)[/tex], the equation simplifies to:
[tex]\[ \frac{x-6}{4} = \frac{x-6}{4} \][/tex]
This simplified equation is true for all values of [tex]\( x \)[/tex] that do not cause a division by zero or make the cancellation invalid.
3. Identify invalid values:
It is important to remember that the cancellation of [tex]\( x-1 \)[/tex] is valid only if [tex]\( x \neq 1 \)[/tex]. If [tex]\( x = 1 \)[/tex], the original denominator would be zero:
[tex]\[ 4(x-1) = 4(1-1) = 4 \cdot 0 = 0 \][/tex]
Division by zero is undefined, so [tex]\( x = 1 \)[/tex] is not a permissible solution.
4. Conclusion:
Therefore, the solution to the equation [tex]\(\frac{(x-1)(x-6)}{4(x-1)} = \frac{x-6}{4}\)[/tex] is all real numbers [tex]\( x \)[/tex] except [tex]\( x = 1 \)[/tex].
In summary:
[tex]\[ x \text{ can be any real number except } x = 1. \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.