Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the formula that represents the described scenario of a bouncing ball, let's analyze the heights provided and identify the pattern they follow step-by-step.
### Step-by-Step Solution:
1. Initial Heights Given:
- First peak: [tex]\( h_1 = 54 \)[/tex] inches
- Second peak: [tex]\( h_2 = 36 \)[/tex] inches
- Third peak: [tex]\( h_3 = 24 \)[/tex] inches
2. Identify the pattern:
- We observe that the heights decrease in a specific way. Let's calculate the common ratio [tex]\( r \)[/tex] between consecutive heights.
- Common ratio [tex]\( r \)[/tex] between the first and second peak:
[tex]\[ r = \frac{h_2}{h_1} = \frac{36}{54} \approx 0.6667 \approx \frac{2}{3} \][/tex]
- Common ratio [tex]\( r \)[/tex] between the second and third peak:
[tex]\[ r = \frac{h_3}{h_2} = \frac{24}{36} \approx 0.6667 \approx \frac{2}{3} \][/tex]
3. General Formula Using the Pattern:
- The pattern shows that each height is multiplied by the common ratio [tex]\( \frac{2}{3} \)[/tex] to get the next height.
- As such, we are dealing with a geometric sequence where the initial height [tex]\( h_0 \)[/tex] (first term) is 54 inches and the common ratio [tex]\( r \)[/tex] is [tex]\( \frac{2}{3} \)[/tex].
4. Constructing the Formula:
- For a geometric sequence, the [tex]\( n \)[/tex]-th term [tex]\( a_n \)[/tex] can be defined as:
[tex]\[ a_n = a_0 \cdot r^n \][/tex]
- In our case, the height at peak [tex]\( x \)[/tex] can be expressed as:
[tex]\[ f(x) = 54 \left(\frac{2}{3}\right)^x \][/tex]
where [tex]\( x \)[/tex] is the number of peaks after the first peak.
5. Conclusion:
- Therefore, the formula that correctly represents the height of the ball at each peak follows the exponential decay pattern as described and is given by:
[tex]\[ \boxed{f(x) = 54 \left(\frac{2}{3}\right)^x} \][/tex]
Thus, the formula [tex]\( f(x) = 54 \left(\frac{2}{3}\right)^x \)[/tex] accurately models the scenario of the bouncing ball and matches the given decreasing sequence of heights.
### Step-by-Step Solution:
1. Initial Heights Given:
- First peak: [tex]\( h_1 = 54 \)[/tex] inches
- Second peak: [tex]\( h_2 = 36 \)[/tex] inches
- Third peak: [tex]\( h_3 = 24 \)[/tex] inches
2. Identify the pattern:
- We observe that the heights decrease in a specific way. Let's calculate the common ratio [tex]\( r \)[/tex] between consecutive heights.
- Common ratio [tex]\( r \)[/tex] between the first and second peak:
[tex]\[ r = \frac{h_2}{h_1} = \frac{36}{54} \approx 0.6667 \approx \frac{2}{3} \][/tex]
- Common ratio [tex]\( r \)[/tex] between the second and third peak:
[tex]\[ r = \frac{h_3}{h_2} = \frac{24}{36} \approx 0.6667 \approx \frac{2}{3} \][/tex]
3. General Formula Using the Pattern:
- The pattern shows that each height is multiplied by the common ratio [tex]\( \frac{2}{3} \)[/tex] to get the next height.
- As such, we are dealing with a geometric sequence where the initial height [tex]\( h_0 \)[/tex] (first term) is 54 inches and the common ratio [tex]\( r \)[/tex] is [tex]\( \frac{2}{3} \)[/tex].
4. Constructing the Formula:
- For a geometric sequence, the [tex]\( n \)[/tex]-th term [tex]\( a_n \)[/tex] can be defined as:
[tex]\[ a_n = a_0 \cdot r^n \][/tex]
- In our case, the height at peak [tex]\( x \)[/tex] can be expressed as:
[tex]\[ f(x) = 54 \left(\frac{2}{3}\right)^x \][/tex]
where [tex]\( x \)[/tex] is the number of peaks after the first peak.
5. Conclusion:
- Therefore, the formula that correctly represents the height of the ball at each peak follows the exponential decay pattern as described and is given by:
[tex]\[ \boxed{f(x) = 54 \left(\frac{2}{3}\right)^x} \][/tex]
Thus, the formula [tex]\( f(x) = 54 \left(\frac{2}{3}\right)^x \)[/tex] accurately models the scenario of the bouncing ball and matches the given decreasing sequence of heights.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.