Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the formula that represents the described scenario of a bouncing ball, let's analyze the heights provided and identify the pattern they follow step-by-step.
### Step-by-Step Solution:
1. Initial Heights Given:
- First peak: [tex]\( h_1 = 54 \)[/tex] inches
- Second peak: [tex]\( h_2 = 36 \)[/tex] inches
- Third peak: [tex]\( h_3 = 24 \)[/tex] inches
2. Identify the pattern:
- We observe that the heights decrease in a specific way. Let's calculate the common ratio [tex]\( r \)[/tex] between consecutive heights.
- Common ratio [tex]\( r \)[/tex] between the first and second peak:
[tex]\[ r = \frac{h_2}{h_1} = \frac{36}{54} \approx 0.6667 \approx \frac{2}{3} \][/tex]
- Common ratio [tex]\( r \)[/tex] between the second and third peak:
[tex]\[ r = \frac{h_3}{h_2} = \frac{24}{36} \approx 0.6667 \approx \frac{2}{3} \][/tex]
3. General Formula Using the Pattern:
- The pattern shows that each height is multiplied by the common ratio [tex]\( \frac{2}{3} \)[/tex] to get the next height.
- As such, we are dealing with a geometric sequence where the initial height [tex]\( h_0 \)[/tex] (first term) is 54 inches and the common ratio [tex]\( r \)[/tex] is [tex]\( \frac{2}{3} \)[/tex].
4. Constructing the Formula:
- For a geometric sequence, the [tex]\( n \)[/tex]-th term [tex]\( a_n \)[/tex] can be defined as:
[tex]\[ a_n = a_0 \cdot r^n \][/tex]
- In our case, the height at peak [tex]\( x \)[/tex] can be expressed as:
[tex]\[ f(x) = 54 \left(\frac{2}{3}\right)^x \][/tex]
where [tex]\( x \)[/tex] is the number of peaks after the first peak.
5. Conclusion:
- Therefore, the formula that correctly represents the height of the ball at each peak follows the exponential decay pattern as described and is given by:
[tex]\[ \boxed{f(x) = 54 \left(\frac{2}{3}\right)^x} \][/tex]
Thus, the formula [tex]\( f(x) = 54 \left(\frac{2}{3}\right)^x \)[/tex] accurately models the scenario of the bouncing ball and matches the given decreasing sequence of heights.
### Step-by-Step Solution:
1. Initial Heights Given:
- First peak: [tex]\( h_1 = 54 \)[/tex] inches
- Second peak: [tex]\( h_2 = 36 \)[/tex] inches
- Third peak: [tex]\( h_3 = 24 \)[/tex] inches
2. Identify the pattern:
- We observe that the heights decrease in a specific way. Let's calculate the common ratio [tex]\( r \)[/tex] between consecutive heights.
- Common ratio [tex]\( r \)[/tex] between the first and second peak:
[tex]\[ r = \frac{h_2}{h_1} = \frac{36}{54} \approx 0.6667 \approx \frac{2}{3} \][/tex]
- Common ratio [tex]\( r \)[/tex] between the second and third peak:
[tex]\[ r = \frac{h_3}{h_2} = \frac{24}{36} \approx 0.6667 \approx \frac{2}{3} \][/tex]
3. General Formula Using the Pattern:
- The pattern shows that each height is multiplied by the common ratio [tex]\( \frac{2}{3} \)[/tex] to get the next height.
- As such, we are dealing with a geometric sequence where the initial height [tex]\( h_0 \)[/tex] (first term) is 54 inches and the common ratio [tex]\( r \)[/tex] is [tex]\( \frac{2}{3} \)[/tex].
4. Constructing the Formula:
- For a geometric sequence, the [tex]\( n \)[/tex]-th term [tex]\( a_n \)[/tex] can be defined as:
[tex]\[ a_n = a_0 \cdot r^n \][/tex]
- In our case, the height at peak [tex]\( x \)[/tex] can be expressed as:
[tex]\[ f(x) = 54 \left(\frac{2}{3}\right)^x \][/tex]
where [tex]\( x \)[/tex] is the number of peaks after the first peak.
5. Conclusion:
- Therefore, the formula that correctly represents the height of the ball at each peak follows the exponential decay pattern as described and is given by:
[tex]\[ \boxed{f(x) = 54 \left(\frac{2}{3}\right)^x} \][/tex]
Thus, the formula [tex]\( f(x) = 54 \left(\frac{2}{3}\right)^x \)[/tex] accurately models the scenario of the bouncing ball and matches the given decreasing sequence of heights.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.