Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine over which interval the exponential function [tex]\(f(x) = e^x\)[/tex] and the linear function [tex]\(g(x) = x\)[/tex] are approximately the same, we need to compare the differences between these two functions over several specified intervals.
We are given the following intervals to consider:
1. From 0.25 to 0.5
2. From 0.5 to 0.75
3. From 0.75 to 1.0
4. From 1.25 to 1.5
Let's analyze the differences over these intervals.
The average differences between [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] over the given intervals are:
1. From 0.25 to 0.5: [tex]\(1.0838600827835139\)[/tex]
2. From 0.5 to 0.75: [tex]\(1.248213425685215\)[/tex]
3. From 0.75 to 1.0: [tex]\(1.5302536494605297\)[/tex]
4. From 1.25 to 1.5: [tex]\(2.5905928532946856\)[/tex]
We need to identify the interval where the average difference between the exponential and linear functions is the smallest. Based on the provided averages, the differences are as follows:
- The interval from 0.25 to 0.5 has the smallest average difference: [tex]\(1.0838600827835139\)[/tex].
Thus, we conclude that the interval over which the exponential function [tex]\(e^x\)[/tex] and the linear function [tex]\(x\)[/tex] are approximately the same is from [tex]\(0.25\)[/tex] to [tex]\(0.5\)[/tex].
We are given the following intervals to consider:
1. From 0.25 to 0.5
2. From 0.5 to 0.75
3. From 0.75 to 1.0
4. From 1.25 to 1.5
Let's analyze the differences over these intervals.
The average differences between [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] over the given intervals are:
1. From 0.25 to 0.5: [tex]\(1.0838600827835139\)[/tex]
2. From 0.5 to 0.75: [tex]\(1.248213425685215\)[/tex]
3. From 0.75 to 1.0: [tex]\(1.5302536494605297\)[/tex]
4. From 1.25 to 1.5: [tex]\(2.5905928532946856\)[/tex]
We need to identify the interval where the average difference between the exponential and linear functions is the smallest. Based on the provided averages, the differences are as follows:
- The interval from 0.25 to 0.5 has the smallest average difference: [tex]\(1.0838600827835139\)[/tex].
Thus, we conclude that the interval over which the exponential function [tex]\(e^x\)[/tex] and the linear function [tex]\(x\)[/tex] are approximately the same is from [tex]\(0.25\)[/tex] to [tex]\(0.5\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.