Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the problem of finding the equation of a line that is parallel to a given line and passes through a specific point, follow these steps:
1. Identify the given line and its characteristics:
The given line is [tex]\( x = -6 \)[/tex]. This line is a vertical line that crosses the x-axis at [tex]\( x = -6 \)[/tex].
2. Understanding parallel lines:
For two lines to be parallel, they must have the same slope. Vertical lines have an undefined slope, and any vertical line will be parallel to another vertical line because they all have the same orientation.
3. Determine the parallel line:
Given that we need a line parallel to [tex]\( x = -6 \)[/tex], the parallel line will also be a vertical line. The equation of a vertical line is always of the form [tex]\( x = \text{constant} \)[/tex].
4. Find the specific vertical line passing through the given point:
The provided point is [tex]\( (-4, -6) \)[/tex]. Since we need a vertical line that passes through [tex]\( (-4, -6) \)[/tex], the x-coordinate of the line must be equal to [tex]\( -4 \)[/tex].
Combining these steps, we conclude that the equation of the line that is parallel to [tex]\( x = -6 \)[/tex] and passes through the point [tex]\( (-4, -6) \)[/tex] is:
[tex]\[ x = -4 \][/tex]
So, the correct equation is [tex]\( x = -4 \)[/tex].
1. Identify the given line and its characteristics:
The given line is [tex]\( x = -6 \)[/tex]. This line is a vertical line that crosses the x-axis at [tex]\( x = -6 \)[/tex].
2. Understanding parallel lines:
For two lines to be parallel, they must have the same slope. Vertical lines have an undefined slope, and any vertical line will be parallel to another vertical line because they all have the same orientation.
3. Determine the parallel line:
Given that we need a line parallel to [tex]\( x = -6 \)[/tex], the parallel line will also be a vertical line. The equation of a vertical line is always of the form [tex]\( x = \text{constant} \)[/tex].
4. Find the specific vertical line passing through the given point:
The provided point is [tex]\( (-4, -6) \)[/tex]. Since we need a vertical line that passes through [tex]\( (-4, -6) \)[/tex], the x-coordinate of the line must be equal to [tex]\( -4 \)[/tex].
Combining these steps, we conclude that the equation of the line that is parallel to [tex]\( x = -6 \)[/tex] and passes through the point [tex]\( (-4, -6) \)[/tex] is:
[tex]\[ x = -4 \][/tex]
So, the correct equation is [tex]\( x = -4 \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.