Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which set of quantum numbers is invalid, we need to review the rules governing the values of quantum numbers in atomic physics:
1. The principal quantum number [tex]\( n \)[/tex]:
- [tex]\( n \)[/tex] must be a positive integer ([tex]\( n > 0 \)[/tex]).
2. The azimuthal (or angular momentum) quantum number [tex]\( l \)[/tex]:
- [tex]\( l \)[/tex] must be an integer such that [tex]\( 0 \le l < n \)[/tex].
3. The magnetic quantum number [tex]\( m \)[/tex]:
- [tex]\( m \)[/tex] must be an integer such that [tex]\( -l \le m \le l \)[/tex].
Let's examine each given set of quantum numbers according to these rules:
### Set 1: [tex]\( n = 2, l = 1, m = 0 \)[/tex]
- [tex]\( n = 2 \)[/tex] (valid, [tex]\( n > 0 \)[/tex]).
- [tex]\( l = 1 \)[/tex], and since [tex]\(0 \le l < 2\)[/tex], [tex]\( l \)[/tex] is valid.
- [tex]\( m = 0 \)[/tex], and since [tex]\( -1 \le 0 \le 1 \)[/tex], [tex]\( m \)[/tex] is valid.
- Conclusion: This set is valid.
### Set 2: [tex]\( n = 1, l = 0, m = 0 \)[/tex]
- [tex]\( n = 1 \)[/tex] (valid, [tex]\( n > 0 \)[/tex]).
- [tex]\( l = 0 \)[/tex], and since [tex]\(0 \le l < 1\)[/tex], [tex]\( l \)[/tex] is valid.
- [tex]\( m = 0 \)[/tex], and since [tex]\( -0 \le 0 \le 0 \)[/tex], [tex]\( m \)[/tex] is valid.
- Conclusion: This set is valid.
### Set 3: [tex]\( n = 3, l = 3, m = 3 \)[/tex]
- [tex]\( n = 3 \)[/tex] (valid, [tex]\( n > 0 \)[/tex]).
- [tex]\( l = 3 \)[/tex], however, [tex]\(0 \le l < 3\)[/tex] must hold, but [tex]\( l = 3 \)[/tex] is not less than [tex]\( n = 3 \)[/tex].
- Conclusion: This set is invalid due to the value of [tex]\( l \)[/tex].
Thus, the set of quantum numbers [tex]\( n=3, l=3, m=3 \)[/tex] is invalid because [tex]\( l \)[/tex] must be less than [tex]\( n \)[/tex]. Therefore, the invalid set of quantum numbers is set 3.
1. The principal quantum number [tex]\( n \)[/tex]:
- [tex]\( n \)[/tex] must be a positive integer ([tex]\( n > 0 \)[/tex]).
2. The azimuthal (or angular momentum) quantum number [tex]\( l \)[/tex]:
- [tex]\( l \)[/tex] must be an integer such that [tex]\( 0 \le l < n \)[/tex].
3. The magnetic quantum number [tex]\( m \)[/tex]:
- [tex]\( m \)[/tex] must be an integer such that [tex]\( -l \le m \le l \)[/tex].
Let's examine each given set of quantum numbers according to these rules:
### Set 1: [tex]\( n = 2, l = 1, m = 0 \)[/tex]
- [tex]\( n = 2 \)[/tex] (valid, [tex]\( n > 0 \)[/tex]).
- [tex]\( l = 1 \)[/tex], and since [tex]\(0 \le l < 2\)[/tex], [tex]\( l \)[/tex] is valid.
- [tex]\( m = 0 \)[/tex], and since [tex]\( -1 \le 0 \le 1 \)[/tex], [tex]\( m \)[/tex] is valid.
- Conclusion: This set is valid.
### Set 2: [tex]\( n = 1, l = 0, m = 0 \)[/tex]
- [tex]\( n = 1 \)[/tex] (valid, [tex]\( n > 0 \)[/tex]).
- [tex]\( l = 0 \)[/tex], and since [tex]\(0 \le l < 1\)[/tex], [tex]\( l \)[/tex] is valid.
- [tex]\( m = 0 \)[/tex], and since [tex]\( -0 \le 0 \le 0 \)[/tex], [tex]\( m \)[/tex] is valid.
- Conclusion: This set is valid.
### Set 3: [tex]\( n = 3, l = 3, m = 3 \)[/tex]
- [tex]\( n = 3 \)[/tex] (valid, [tex]\( n > 0 \)[/tex]).
- [tex]\( l = 3 \)[/tex], however, [tex]\(0 \le l < 3\)[/tex] must hold, but [tex]\( l = 3 \)[/tex] is not less than [tex]\( n = 3 \)[/tex].
- Conclusion: This set is invalid due to the value of [tex]\( l \)[/tex].
Thus, the set of quantum numbers [tex]\( n=3, l=3, m=3 \)[/tex] is invalid because [tex]\( l \)[/tex] must be less than [tex]\( n \)[/tex]. Therefore, the invalid set of quantum numbers is set 3.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.