Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the new [tex]\( y \)[/tex]-coordinate of point [tex]\( D \)[/tex] after a translation, we need to follow these steps:
1. Identify the initial coordinates of point [tex]\( D \)[/tex]: Let's denote the initial coordinates as [tex]\( (x, y) \)[/tex].
2. Translation amounts: The problem specifies a translation of [tex]\( (x, y) \rightarrow (x+6, y-4) \)[/tex]. This means the [tex]\( x \)[/tex]-coordinate increases by 6 units and the [tex]\( y \)[/tex]-coordinate decreases by 4 units.
3. Initial [tex]\( y \)[/tex]-coordinate: For the point [tex]\( D \)[/tex], suppose the initial coordinates are [tex]\( (3.5, y_{initial}) \)[/tex]. The initial [tex]\( y \)[/tex]-coordinate is referred to as [tex]\( y_{initial} \)[/tex].
4. Calculate the new [tex]\( y \)[/tex]-coordinate:
- According to the translation rule, the new [tex]\( y \)[/tex]-coordinate will be [tex]\( y_{initial} - 4 \)[/tex].
Without the initial [tex]\( y \)[/tex]-coordinate given, we can't calculate an exact numerical value. However, we can express the new [tex]\( y \)[/tex]-coordinate in terms of the initial [tex]\( y \)[/tex]-coordinate.
So, if the initial coordinates of [tex]\( D \)[/tex] are [tex]\( (3.5, y_{initial}) \)[/tex], after the translation, the new coordinates of [tex]\( D \)[/tex] (denoted as [tex]\( D' \)[/tex]) will be [tex]\( (3.5 + 6, y_{initial} - 4) \)[/tex].
This simplifies to:
[tex]\[ D' (9.5, y_{initial} - 4) \][/tex]
To summarize:
- The [tex]\( y \)[/tex]-coordinate of point [tex]\( D' \)[/tex] after the translation will be [tex]\( y_{initial} - 4 \)[/tex].
1. Identify the initial coordinates of point [tex]\( D \)[/tex]: Let's denote the initial coordinates as [tex]\( (x, y) \)[/tex].
2. Translation amounts: The problem specifies a translation of [tex]\( (x, y) \rightarrow (x+6, y-4) \)[/tex]. This means the [tex]\( x \)[/tex]-coordinate increases by 6 units and the [tex]\( y \)[/tex]-coordinate decreases by 4 units.
3. Initial [tex]\( y \)[/tex]-coordinate: For the point [tex]\( D \)[/tex], suppose the initial coordinates are [tex]\( (3.5, y_{initial}) \)[/tex]. The initial [tex]\( y \)[/tex]-coordinate is referred to as [tex]\( y_{initial} \)[/tex].
4. Calculate the new [tex]\( y \)[/tex]-coordinate:
- According to the translation rule, the new [tex]\( y \)[/tex]-coordinate will be [tex]\( y_{initial} - 4 \)[/tex].
Without the initial [tex]\( y \)[/tex]-coordinate given, we can't calculate an exact numerical value. However, we can express the new [tex]\( y \)[/tex]-coordinate in terms of the initial [tex]\( y \)[/tex]-coordinate.
So, if the initial coordinates of [tex]\( D \)[/tex] are [tex]\( (3.5, y_{initial}) \)[/tex], after the translation, the new coordinates of [tex]\( D \)[/tex] (denoted as [tex]\( D' \)[/tex]) will be [tex]\( (3.5 + 6, y_{initial} - 4) \)[/tex].
This simplifies to:
[tex]\[ D' (9.5, y_{initial} - 4) \][/tex]
To summarize:
- The [tex]\( y \)[/tex]-coordinate of point [tex]\( D' \)[/tex] after the translation will be [tex]\( y_{initial} - 4 \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.